The dilution zone in modern aero-engine combustors is characterized by a strong swirling mainstream with weak transverse jets. This characteristic brings new challenges in homogenizing the temperature distribution at the combustor exit. Therefore, it is imperative to understand the temperature penetration and mixing process of the jet in swirling crossflow (JISCF). This investigation provides new insight in the temperature mixing process for a JISCF in nozzle exit diameter (D) at 7.4, 10.7, and 14 mm and jet to mainstream velocity ratio (VR) from 2.0 to 6.6. The temperature mixing process was measured in a specially designed optical assessable three-dome model gas turbine combustor by planar 1-methylnaphthalene (1-MN) tracer laser-induced fluorescence thermometry. A detailed quantitative measurement of temperature distribution is achieved through the spectral red shift in the fluorescence of 1-MN as the temperature increase. This diagnostic was employed to provide the first two-dimensional temperature distribution for the JISCF. The results showed that the swirling crossflows induce strong spanwise thermal advection, forming secondary low-temperature regions downstream. Generally, the flow structure and mixing process are governed by the interaction of jet and swirling flow. The jet flow parameters, including velocity ratio and diameter, changed the flow structures by changing the interaction between jet and swirling flow. Statistical results and proper orthogonal decomposition (POD) analyses showed a strong anisotropic mixing process in the downstream of the jet.

1.
A. R.
Karagozian
, “
Transverse jets and their control
,”
Prog. Energy Combust. Sci.
36
,
531
(
2010
).
2.
S. H.
Smith
and
M. G.
Mungal
, “
Mixing, structure and scaling of the jet in crossflow
,”
J. Fluid Mech.
357
,
83
(
1998
).
3.
L. K.
Su
and
M. G.
Mungal
, “
Simultaneous measurements of scalar and velocity field evolution in turbulent crossflowing jets
,”
J. Fluid Mech.
513
,
1
(
2004
).
4.
L.
Zhang
and
V.
Yang
, “
Flow dynamics and mixing of a transverse jet in crossflow—Part I: Steady crossflow
,”
J. Eng. Gas Turbines Power
139
,
082601
(
2017
).
5.
L. L.
Yuan
,
R. L.
Street
, and
J. H.
Ferziger
, “
Large-eddy simulations of a round jet in crossflow
,”
J. Fluid Mech.
379
,
71
(
1999
).
6.
R. T.
M'closkey
,
J. M.
King
,
L.
Cortelezzi
, and
A. R.
Karagozian
, “
The actively controlled jet in crossflow
,”
J. Fluid Mech.
452
,
325
(
2002
).
7.
S.
Narayanan
,
P.
Barooah
, and
J. M.
Cohen
, “
Dynamics and control of an isolated jet in crossflow
,”
AIAA J.
41
,
2316
(
2003
).
8.
L.
Zhang
and
V.
Yang
, “
Flow dynamics and mixing of a transverse jet in crossflow—Part II: Oscillating crossflow
,”
J. Eng. Gas Turbines Power
139
,
082602
(
2017
).
9.
K.
Mahesh
, “
The interaction of jets with crossflow
,”
Annu. Rev. Fluid Mech.
45
,
379
(
2013
).
10.
D. R.
Getsinger
,
L.
Gevorkyan
,
O. I.
Smith
, and
A. R.
Karagozian
, “
Structural and stability characteristics of jets in crossflow
,”
J. Fluid Mech.
760
,
342
(
2014
).
11.
J. E.
Broadwell
and
R. E.
Breidenthal
, “
Structure and mixing of a transverse jet in incompressible flow
,”
J. Fluid Mech.
148
,
405
(
1984
).
12.
L.
Gevorkyan
,
T.
Shoji
,
D. R.
Getsinger
,
O. I.
Smith
, and
A. R.
Karagozian
, “
Transverse jet mixing characteristics
,”
J. Fluid Mech.
790
,
237
(
2016
).
13.
J. W.
Shan
and
P. E.
Dimotakis
, “
Reynolds-number effects and anisotropy in transverse-jet mixing
,”
J. Fluid Mech.
566
,
47
(
2006
).
14.
S.
Muppidi
and
K.
Mahesh
, “
Study of trajectories of jets in crossflow using direct numerical simulations
,”
J. Fluid Mech.
530
,
81
(
2005
).
15.
T. F.
Fric
and
A.
Roshko
, “
Vortical structure in the wake of a transverse jet
,”
J. Fluid Mech.
279
,
1
(
1994
).
16.
R. J.
Margason
,
Fifty Years of Jet in Cross Flow Research
(
AGARD
,
1993
).
17.
P.
Schreivogel
,
C.
Abram
,
B.
Fond
,
M.
Straußwald
,
F.
Beyrau
, and
M.
Pfitzner
, “
Simultaneous kHz-rate temperature and velocity field measurements in the flow emanating from angled and trenched film cooling holes
,”
Int. J. Heat Mass Transfer
103
,
390
(
2016
).
18.
M.
Straußwald
,
C.
Abram
,
T.
Sander
,
F.
Beyrau
, and
M.
Pfitzner
, “
Time-resolved temperature and velocity field measurements in gas turbine film cooling flows with mainstream turbulence
,”
Exp. Fluids
62
(
1
),
1
(
2021
).
19.
D.
Lilley
, “
Lateral jet injection into typical combustor flowfields
,” in
22nd Aerospace Sciences Meeting
(
AIAA
,
1986
), p.
374
.
20.
D.
Lilley
, “
Swirling flows and lateral jet injection for improved mixing and combustion
,” AIAA Paper No. 2011-103,
2011
.
21.
D.
Lilley
, “
Swirl and lateral jet injection for mixing and combustion efficiency
” AIAA Paper No. 2014-1383,
2014
.
22.
D.
Lilley
, “
Hot-wire measurements of a single lateral jet injected into swirling crossflow
,” in
24th Aerospace Sciences Meeting
(
AIAA
,
1986
), p.
55
.
23.
G.
Ferrell
,
K.
Aoki
, and
D.
Lilley
, “
Flow visualization of lateral jet injection into swirling crossflow
,” in
23rd Aerospace Sciences Meeting
(
AIAA
,
1985
), p.
59
.
24.
D. G.
Lilley
, “
Jet injection into swirling crossflow for improved mixing and combustion
,”
International Joint Power Generation Conference 36177
(
ASME
,
2002
),
pp. 881
888
.
25.
Y. C.
Chao
and
W. C.
Ho
, “
Heterogeneous and nonisothermal mixing of a lateral jet with a swirling crossflow
,”
J. Thermophys. Heat Transfer
5
,
394
(
1991
).
26.
J. M.
Tsao
and
C. A.
Lin
, “
Reynolds stress modelling of jet and swirl interaction inside a gas turbine combustor
,”
Int. J. Numer. Methods Fluids
29
,
451
(
1999
).
27.
S. A.
Ahmed
and
R. M. C.
So
, “
Characteristics of air jets discharging normally into a swirling crossflow
,”
AIAA J.
25
,
429
(
1987
).
28.
P. P.
Panda
,
M.
Roa
,
C. D.
Slabaugh
,
S.
Peltier
,
C. D.
Carter
,
W. R.
Laster
, and
R. P.
Lucht
, “
High-repetition-rate planar measurements in the wake of a reacting jet injected into a swirling vitiated crossflow
,”
Combust. Flame
163
,
241
(
2016
).
29.
P. P.
Panda
,
M.
Roa
,
P.
Szedlacsek
,
W. R.
Laster
, and
R. P.
Lucht
, “
Structure and dynamics of the wake of a reacting jet injected into a swirling, vitiated crossflow in a staged combustion system
,”
Exp. Fluids
56
(
1
),
21
(
2015
).
30.
J.
Cai
,
S. M.
Jeng
, and
R.
Tacina
, “
Multi-swirler aerodynamics—Experimental measurements
,” AIAA Paper No. 2001-3574,
2001
.
31.
K.
Yao
,
X.
He
,
Y.
Jin
,
Y.
Huang
,
Y.
Wang
, and
D.
Zhao
, “
Investigations of the effect of the primary hole on ignition performance of a three-dome model combustor with RP-3 liquid aviation fuel
,”
Aerosp. Sci. Technol.
139
,
108403
(
2023
).
32.
N.
Meng
and
F.
Li
, “
Large eddy simulations of unsteady non-reaction flow characteristics using different geometrical combustor models
,”
Aerosp. Sci. Technol.
126
,
107638
(
2022
).
33.
N.
Soulopoulos
,
Y.
Hardalupas
, and
A.
Taylor
, “
Scalar dissipation rate measurements in a starting jet
,”
Exp. Fluids
55
,
1
(
2014
).
34.
I. A.
Mulla
and
Y.
Hardalupas
, “
Measurement of instantaneous fully 3D scalar dissipation rate in a turbulent swirling flow
,”
Exp. Fluids
63
,
173
(
2022
).
35.
J.
Koch
and
R.
Hanson
, “
Ketone photophysics for quantitative PLIF imaging
,” AIAA Paper No. 2001-413,
2001
.
36.
M. C.
Thurber
and
R. K.
Hanson
, “
Pressure and composition dependences of acetone laser-induced fluorescence with excitation at 248, 266, and 308 nm
,”
Appl. Phys. B
69
,
229
(
1999
).
37.
R. K.
Cheng
,
D.
Littlejohn
,
W. A.
Nazeer
, and
K. O.
Smith
, “
Laboratory studies of the flow field characteristics of low-swirl injectors for adaptation to fuel-flexible turbines
,”
J. Eng. Gas Turbines Power
130
,
021501
(
2008
).
38.
S. A.
Kaiser
and
M. B.
Long
, “
Quantitative planar laser-induced fluorescence of naphthalenes as fuel tracers
,”
Proc. Combust. Inst.
30
,
1555
(
2005
).
39.
S.
Lind
,
U.
Retzer
,
S.
Will
, and
L.
Zigan
, “
Investigation of mixture formation in a diesel spray by tracer-based laser-induced fluorescence using 1-methylnaphthalene
,”
Proc. Combust. Inst.
36
,
4497
(
2017
).
40.
X.
Hua
,
Y.
Liu
,
C.
Chen
,
Y.
Hardalupas
, and
A. M. K. P.
Taylor
, “
Mixing and scalar dissipation rate in a decaying jet
,”
Proc. Combust. Inst.
38
,
3251
(
2021
).
41.
N.
Soulopoulos
, “
Experimental investigation of scalar mixing in unsteady turbulent jets
,” Ph.D. dissertation (Imperial College London, 2009).
42.
G. H.
Wang
,
R. S.
Barlow
, and
N. T.
Clemens
, “
Quantification of resolution and noise effects on thermal dissipation measurements in turbulent non-premixed jet flames
,”
Proc. Combust. Inst.
31
,
1525
(
2007
).
43.
H.
Malm
,
G.
Sparr
,
J.
Hult
, and
C. F.
Kaminski
, “
Nonlinear diffusion filtering of images obtained by planar laser-induced fluorescence spectroscopy
,”
J. Opt. Soc. Am. A
17
,
2148
(
2000
).
44.
L.
Sirovich
and
M.
Kirby
, “
Low-dimensional procedure for the characterization of human faces
,”
J. Opt. Soc. Am. A
4
,
519
(
1987
).
45.
X.
Zhang
,
K. C.
Wang
,
X.
Wen
,
C. X.
He
,
Y. Z.
Liu
, and
W. W.
Zhou
, “
Experimental study of time-resolved simultaneous velocity and concentration fields of an inclined jet in crossflow
,”
Int. J. Heat Mass Transfer
188
,
122622
(
2022
).
You do not currently have access to this content.