In Paper I, we presented comprehensive three-dimensional, three-component (3D, 3C) mean velocity profiles obtained through magnetic resonance velocimetry (MRV) within a 37-pin wire-wrapped rod bundle, elucidating the primary flow dynamics in sodium-cooled fast reactors. Building on this foundation, in this paper, we meticulously examine transverse velocity, helicity, and streamlines around rods, focusing particularly on the wake region of the wire within interior and edge subchannels. Our analysis uncovers a repetitive vortex evolution pattern in the wake, characterized by vortices forming, growing, weakening, and dissipating at 60° intervals of wire angular position. Furthermore, we highlight the significant variation in the azimuthal velocity component near the wire's wake, elucidating the dominant influence of wire orientation. Additionally, we identify the periodicity of flow split factor variations, demonstrating their dependence on wire orientation in interior subchannels and the prevailing impact of edge swirling in edge subchannels. Overall, our quantitatively derived experimental results provide valuable insights into flow patterns within the rod bundle, offering essential information for optimizing reactor design and analysis.

1.
M.
Naveen Raj
and
K.
Velusamy
, “
Characterization of velocity and temperature fields in a 217 pin wire wrapped fuel bundle of sodium cooled fast reactor
,”
Ann. Nucl. Energy
87
,
331
(
2016
).
2.
P.
Zhao
,
J.
Liu
,
Z.
Ge
,
X.
Wang
, and
X.
Cheng
, “
CFD analysis of transverse flow in a wire-wrapped hexagonal seven-pin bundle
,”
Nucl. Eng. Des.
317
,
146
(
2017
).
3.
J.-H.
Jeong
,
J.
Yoo
,
K.-L.
Lee
, and
K.-S.
Ha
, “
Three-dimensional flow phenomena in a wire-wrapped 37-pin fuel bundle for SFR
,”
Nucl. Eng. Technol.
47
,
523
(
2015
).
4.
M. S.
Song
,
J. H.
Jeong
, and
E. S.
Kim
, “
Numerical investigation on vortex behavior in wire-wrapped fuel assembly for a sodium fast reactor
,”
Nucl. Eng. Technol.
51
,
665
(
2019
).
5.
J.-H.
Jeong
,
M.-S.
Song
, and
K.-L.
Lee
, “
CFD investigation of three-dimensional flow phenomena in a JAEA 127-pin wire-wrapped fuel assembly
,”
Nucl. Eng. Des.
323
,
166
(
2017
).
6.
J.-H.
Jeong
,
M.-S.
Song
, and
K.-L.
Lee
, “
RANS based CFD methodology for a real scale 217-pin wire-wrapped fuel assembly of KAERI PGSFR
,”
Nucl. Eng. Des.
313
,
470
(
2017
).
7.
J.-H.
Jeong
,
M.-S.
Song
, and
K.-L.
Lee
, “
Thermal-hydraulic effect of wire spacer in a wire-wrapped fuel bundles for SFR
,”
Nucl. Eng. Des.
320
,
28
(
2017
).
8.
K.
Lyu
,
X.
Sheng
,
X.
Ma
,
H.
Wang
,
W.
Shi
, and
Z.
Cheng
, “
Numerical investigation of thermal hydraulic behaviors in wire-wrapped bundle with smaller wire diameter of peripheral rods
,”
Ann. Nucl. Energy
163
,
108526
(
2021
).
9.
S.-K.
Chang
,
D.-J.
Euh
,
H. S.
Choi
,
H.
Kim
,
S. R.
Choi
, and
H.-Y.
Lee
, “
Flow distribution and pressure loss in subchannels of a wire-wrapped 37-pin rod bundle for a sodium-cooled fast reactor
,”
Nucl. Eng. Technol.
48
,
376
(
2016
).
10.
S.-K.
Chang
,
D.-J.
Euh
,
S.
Kim
,
H. S.
Choi
,
H.
Kim
,
Y. J.
Ko
,
S. R.
Choi
, and
H.-Y.
Lee
, “
Experimental study of the flow characteristics in an SFR type 61-pin rod bundle using iso-kinetic sampling method
,”
Ann. Nucl. Energy
106
,
160
(
2017
).
11.
Y.
Liang
,
D.
Zhang
,
Y.
Chen
,
K.
Zhang
,
W.
Tian
,
S.
Qiu
, and
G.
Su
, “
An experiment study of pressure drop and flow distribution in subchannels of a 37-pin wire-wrapped rod bundle
,”
Appl. Therm. Eng.
174
,
115283
(
2020
).
12.
N.
Goth
,
P.
Jones
,
T.
Duy Nguyen
,
R.
Vaghetto
,
Y.
Hassan
,
N.
Salpeter
, and
E.
Merzari
, “
PTV/PIV measurements of turbulent flows in interior subchannels of a 61-pin wire-wrapped hexagonal fuel bundle
,”
Int. J. Heat Fluid Flow
71
,
295
(
2018
).
13.
T.
Nguyen
,
N.
Goth
,
P.
Jones
,
S.
Lee
,
R.
Vaghetto
, and
Y.
Hassan
, “
PIV measurements of turbulent flows in a 61-pin wire-wrapped hexagonal fuel bundle
,”
Int. J. Heat Fluid Flow
65
,
47
(
2017
).
14.
F.
Bertocchi
,
M.
Rohde
, and
J. L.
Kloosterman
, “
Understanding migratory flow caused by helicoid wire spacers in rod bundles: An experimental and theoretical study
,”
Int. J. Heat Fluid Flow
80
,
108491
(
2019
).
15.
N.
Goth
,
P.
Jones
,
D. T.
Nguyen
,
R.
Vaghetto
,
Y. A.
Hassan
,
A.
Obabko
,
E.
Merzari
, and
P. F.
Fischer
, “
Comparison of experimental and simulation results on interior subchannels of a 61-pin wire-wrapped hexagonal fuel bundle
,”
Nucl. Eng. Des.
338
,
130
(
2018
).
16.
C.
Menezes
,
A. D.
Carroll
III
,
C. F.
Matozinhos
,
R.
Vaghetto
, and
Y. A.
Hassan
, “
Turbulent flow characteristics in an 84-pin rod bundle for typical and damaged spacer grids
,”
Phys. Fluids
34
,
055103
(
2022
).
17.
C.
Menezes
,
T.
Melsheimer
,
D. W.
Pyle
,
M.
Kinsky
, and
Y. A.
Hassan
, “
Flow characteristics within an interior subchannel of a 61-pin wire-wrapped hexagonal rod bundle with a porous blockage
,”
Phys. Fluids
35
,
027106
(
2023
).
18.
T.
Nguyen
,
R.
Vaghetto
, and
Y.
Hassan
, “
Experimental investigation of turbulent wake flows in a helically wrapped rod bundle in presence of localized blockages
,”
Phys. Fluids
32
,
075113
(
2020
).
19.
T.
Nguyen
,
L.
White
,
R.
Vaghetto
, and
Y.
Hassan
, “
Turbulent flow and vortex characteristics in a blocked subchannel of a helically wrapped rod bundle
,”
Exp. Fluids
60
,
129
(
2019
).
20.
M. S.
Song
,
J.-H.
Jeong
, and
E. S.
Kim
, “
Flow visualization on SFR wire-wrapped 19-pin bundle geometry using MIR-PIV-PLIF and comparisons with RANS-based CFD analysis
,”
Ann. Nucl. Energy
147
,
107653
(
2020
).
21.
C.
Zhang
,
H.
Ju
,
D.
Zhang
,
S.
Wu
,
Y.
Xu
,
Y.
Wu
,
S.
Qiu
, and
G. H.
Su
, “
PIV measurement and numerical investigation on flow characteristics of simulated fast reactor fuel subassembly
,”
Nucl. Eng. Technol.
52
,
897
(
2020
).
22.
T.
Nguyen
,
N.
Goth
,
P.
Jones
,
R.
Vaghetto
, and
Y.
Hassan
, “
Stereoscopic PIV measurements of near-wall flow in a tightly packed rod bundle with wire spacers
,”
Exp. Therm. Fluid Sci.
92
,
420
(
2018
).
23.
R.
Gajapathy
,
K.
Velusamy
,
P.
Selvaraj
, and
P.
Chellapandi
, “
CFD investigation of effect of helical wire-wrap parameters on the thermal hydraulic performance of 217 fuel pin bundle
,”
Ann. Nucl. Energy
77
,
498
(
2015
).
24.
R.
Gajapathy
and
K.
Velusamy
, “
CFD investigations of helical wire-wrap fuel pin bundle and its comparison with straight wire bundle
,”
Prog. Nucl. Energy
89
,
57
(
2016
).
25.
M.
Song
,
J.-H.
Jeong
, and
E. S.
Kim
, “
Investigation on subchannel flow distribution in wire-wrapped 37 and 61-pin bundle using computational fluid dynamics
,”
Nucl. Eng. Des.
370
,
110904
(
2020
).
26.
O.
Bovati
and
Y.
Hassan
, “
Implementation of a CFD methodology for computing subchannel friction factors and split parameters in wire-wrapped rod bundles
,”
Nucl. Eng. Des.
397
,
111952
(
2022
).
27.
K. R.
O'Brien
,
B. R.
Cowan
,
M.
Jain
,
R. A. H.
Stewart
,
A. J.
Kerr
, and
A. A.
Young
, “
MRI phase contrast velocity and flow errors in turbulent stenotic jets
,”
Magn. Reson. Imaging
28
,
210
(
2008
).
28.
K.
John
,
S.
Jahangir
,
U.
Gawandalkar
,
W.
Hogendoorn
,
C.
Poelma
,
S.
Grundmann
, and
M.
Bruschewski
, “
Magnetic resonance velocimetry in high-speed turbulent flows: Sources of measurement errors and a new approach for higher accuracy
,”
Exp. Fluids
61
,
27
(
2020
).
29.
S.
Petersson
,
P.
Dyverfeldt
,
R.
Gårdhagen
,
M.
Karlsson
, and
T.
Ebbers
, “
Simulation of phase contrast MRI of turbulent flow
,”
Magn. Reson. Med.
64
,
1039
(
2010
).
30.
A. J.
Evans
,
R. A.
Blinder
,
R. J.
Herfkens
,
C. E.
Spritzer
,
D. O.
Kuethe
,
E. K.
Fram
, and
L. W.
Hedlund
, “
Effects of turbulence on signal intensity in gradient echo images
,”
Invest. Radiol.
23
,
512
(
1988
).
You do not currently have access to this content.