The sodium-cooled fast reactor (SFR), a fourth-generation nuclear reactor, utilizes liquid sodium as a coolant and offers advantages like operation at atmospheric pressure and the use of spent nuclear fuel. Understanding flow characteristics around fuel rod bundle is crucial for securing cooling performance and safety. This study investigates the flow characteristics in a 37-pin wire-wrapped fuel rod bundle of SFR from three-dimensional flow fields measured by magnetic resonance velocimetry. Aimed at enhancing the understanding of coolant flow dynamics crucial for reactor safety and efficiency, the study successfully captures and validates three-dimensional, three components of mean velocities. Key discoveries include phase differences between wire position and high velocity regions, evidence of upstream flow influence by wire structures, and secondary flows such as edge swirling induced by wire blockage. The research offers detailed insights into subchannel velocities and flow split factors, contributing to improved SFR design and safety.

1.
J.-H.
Jeong
,
M.-S.
Song
, and
K.-L.
Lee
, “
Thermal-hydraulic effect of wire spacer in a wire-wrapped fuel bundles for SFR
,”
Nucl. Eng. Des.
320
,
28
(
2017
).
2.
J.-H.
Jeong
,
J.
Yoo
,
K.-L.
Lee
, and
K.-S.
Ha
, “
Three-dimensional flow phenomena in a wire-wrapped 37-pin fuel bundle for SFR
,”
Nucl. Eng. Technol.
47
,
523
(
2015
).
3.
J.-H.
Jeong
,
M.-S.
Song
, and
K.-L.
Lee
, “
CFD investigation of three-dimensional flow phenomena in a JAEA 127-pin wire-wrapped fuel assembly
,”
Nucl. Eng. Des.
323
,
166
(
2017
).
4.
M. S.
Song
,
J. H.
Jeong
, and
E. S.
Kim
, “
Numerical investigation on vortex behavior in wire-wrapped fuel assembly for a sodium fast reactor
,”
Nucl. Eng. Technol.
51
,
665
(
2019
).
5.
M.
Song
,
J.-H.
Jeong
, and
E. S.
Kim
, “
Investigation on subchannel flow distribution in wire-wrapped 37 and 61-pin bundle using computational fluid dynamics
,”
Nucl. Eng. Des.
370
,
110904
(
2020
).
6.
S.-K.
Chang
,
D.-J.
Euh
,
H. S.
Choi
,
H.
Kim
,
S. R.
Choi
, and
H.-Y.
Lee
, “
Flow distribution and pressure loss in subchannels of a wire-wrapped 37-pin rod bundle for a sodium-cooled fast reactor
,”
Nucl. Eng. Technol.
48
,
376
(
2016
).
7.
S.-K.
Chang
,
D.-J.
Euh
,
S.
Kim
,
H. S.
Choi
,
H.
Kim
,
Y. J.
Ko
,
S. R.
Choi
, and
H.-Y.
Lee
, “
Experimental study of the flow characteristics in an SFR type 61-pin rod bundle using iso-kinetic sampling method
,”
Ann. Nucl. Energy
106
,
160
(
2017
).
8.
S. R.
Choi
,
H.
Kim
,
S.-K.
Chang
,
H. S.
Choi
,
D.-J.
Euh
,
H.-Y.
Lee
, and
W. S.
Yang
, “
Assessment of subchannel flow mixing coefficients for wire-wrapped hexagonal fuel rod bundles
,”
Ann. Nucl. Energy
166
,
108810
(
2022
).
9.
T.
Nguyen
,
N.
Goth
,
P.
Jones
,
S.
Lee
,
R.
Vaghetto
, and
Y.
Hassan
, “
PIV measurements of turbulent flows in a 61-pin wire-wrapped hexagonal fuel bundle
,”
Int. J. Heat Fluid Flow
65
,
47
(
2017
).
10.
N.
Goth
,
P.
Jones
,
T.
Duy Nguyen
,
R.
Vaghetto
,
Y.
Hassan
,
N.
Salpeter
, and
E.
Merzari
, “
PTV/PIV measurements of turbulent flows in interior subchannels of a 61-pin wire-wrapped hexagonal fuel bundle
,”
Int. J. Heat Fluid Flow
71
,
295
(
2018
).
11.
N.
Goth
,
P.
Jones
,
D. T.
Nguyen
,
R.
Vaghetto
,
Y. A.
Hassan
,
A.
Obabko
,
E.
Merzari
, and
P. F.
Fischer
, “
Comparison of experimental and simulation results on interior subchannels of a 61-pin wire-wrapped hexagonal fuel bundle
,”
Nucl. Eng. Des.
338
,
130
(
2018
).
12.
T.
Nguyen
,
N.
Goth
,
P.
Jones
,
R.
Vaghetto
, and
Y.
Hassan
, “
Stereoscopic PIV measurements of near-wall flow in a tightly packed rod bundle with wire spacers
,”
Exp. Therm. Fluid Sci.
92
,
420
(
2018
).
13.
F.
Bertocchi
,
M.
Rohde
, and
J. L.
Kloosterman
, “
Understanding migratory flow caused by helicoid wire spacers in rod bundles: An experimental and theoretical study
,”
Int. J. Heat Fluid Flow
80
,
108491
(
2019
).
14.
M. S.
Song
,
J.-H.
Jeong
, and
E. S.
Kim
, “
Flow visualization on SFR wire-wrapped 19-pin bundle geometry using MIR-PIV-PLIF and comparisons with RANS-based CFD analysis
,”
Ann. Nucl. Energy
147
,
107653
(
2020
).
15.
C.
Zhang
,
H.
Ju
,
D.
Zhang
,
S.
Wu
,
Y.
Xu
,
Y.
Wu
,
S.
Qiu
, and
G. H.
Su
, “
PIV measurement and numerical investigation on flow characteristics of simulated fast reactor fuel subassembly
,”
Nucl. Eng. Technol.
52
,
897
(
2020
).
16.
C.
Menezes
,
T.
Melsheimer
,
D. W.
Pyle
,
M.
Kinsky
, and
Y. A.
Hassan
, “
Flow characteristics within an interior subchannel of a 61-pin wire-wrapped hexagonal rod bundle with a porous blockage
,”
Phys. Fluids
35
,
027106
(
2023
).
17.
T.
Nguyen
,
R.
Vaghetto
, and
Y.
Hassan
, “
Experimental investigation of turbulent wake flows in a helically wrapped rod bundle in presence of localized blockages
,”
Phys. Fluids
32
,
075113
(
2020
).
18.
C. J.
Elkins
and
M. T.
Alley
, “
Magnetic resonance velocimetry: Applications of magnetic resonance imaging in the measurement of fluid motion
,”
Exp. Fluids
43
,
823
(
2007
).
19.
J.
Lee
,
B.
Yang
,
J.-H.
Cho
, and
S.
Song
, “
Velocity and pressure visualization of three-dimensional flow in porous textiles
,”
Text. Res. J.
89
,
5041
(
2019
).
20.
J.
Lee
,
S.
Ko
,
J.-H.
Cho
, and
S.
Song
, “
Validation of magnetic resonance velocimetry for mean velocity measurements of turbulent flows in a circular pipe
,”
J. Mech. Sci. Technol.
31
,
1275
(
2017
).
21.
K.
Han
,
S.-G.
Lee
,
K.
Kim
,
B.
Jeong
,
M.
Paek
,
W.
Lee
, and
W.
Hwang
, “
Investigation of the effects of nasal surgery on nasal cavity flow using magnetic resonance velocimetry and computational fluid dynamics
,”
Phys. Fluids
35
,
111908
(
2023
).
22.
Y.
Han
,
L.
Zhou
,
L.
Bai
,
W.
Shi
, and
R.
Agarwal
, “
Comparison and validation of various turbulence models for U-bend flow with a magnetic resonance velocimetry experiment
,”
Phys. Fluids
33
,
125117
(
2021
).
23.
H.
Dong
,
C.
Im
,
C.
Kang
,
J.-H.
Cho
,
I.
Jang
, and
S.
Song
, “
Investigation of flow behavior in a refrigerator machine room using magnetic resonance velocimetry
,”
Int. J. Heat Mass Transfer
214
,
124446
(
2023
).
24.
M. J.
Benson
,
A. J.
Banko
,
C. J.
Elkins
,
D.-G.
An
,
S.
Song
,
M.
Bruschewski
,
S.
Grundmann
,
D. D.
Borup
, and
J. K.
Eaton
, “
2019 MRV challenge: Turbulent flow through a U-bend
,”
Exp. Fluids
61
,
148
(
2020
).
25.
M. J.
Benson
,
A. J.
Banko
,
C. J.
Elkins
,
D.-G.
An
,
S.
Song
,
M.
Bruschewski
,
S.
Grundmann
,
T.
Bandopadhyay
,
L. V.
Roca
,
B.
Sutton
,
K.
Han
,
W.
Hwang
, and
J. K.
Eaton
, “
MRV challenge 2: phase locked turbulent measurements in a roughness array
,”
Exp. Fluids
64
,
28
(
2023
).
26.
M. H. A.
Piro
,
F.
Wassermann
,
S.
Grundmann
,
B.
Tensuda
,
S. J.
Kim
,
M.
Christon
,
M.
Berndt
,
M.
Nishimura
, and
C.
Tropea
, “
Fluid flow investigations within a 37 element CANDU fuel bundle supported by magnetic resonance velocimetry and computational fluid dynamics
,”
Int. J. Heat Fluid Flow
66
,
27
(
2017
).
27.
M.
Bruschewski
,
M. H. A.
Piro
,
C.
Tropea
, and
S.
Grundmann
, “
Fluid flow in a diametrally expanded CANDU fuel channel. I. Experimental study
,”
Nucl. Eng. Des.
357
,
110371
(
2020
).
28.
K.
John
,
S.
Jahangir
,
U.
Gawandalkar
,
W.
Hogendoorn
,
C.
Poelma
,
S.
Grundmann
, and
M.
Bruschewski
, “
Magnetic resonance velocimetry in high-speed turbulent flows: Sources of measurement errors and a new approach for higher accuracy
,”
Exp. Fluids
61
,
27
(
2020
).
29.
J.
Pacio
,
S. K.
Chen
,
Y. M.
Chen
, and
N. E.
Todreas
, “
Analysis of pressure losses and flow distribution in wire-wrapped hexagonal rod bundles for licensing. Part I: The Pacio-Chen-Todreas Detailed model (PCTD)
,”
Nucl. Eng. Des.
388
,
111607
(
2022
).
30.
M. C.
Wapler
,
J.
Leupold
,
I.
Dragonu
,
D.
von Elverfeld
,
M.
Zaitsev
, and
U.
Wallrabe
, “
Magnetic properties of materials for MR engineering, micro-MR and beyond
,”
J. Magn. Reson.
242
,
233
(
2014
).
31.
E.
Merzari
,
P.
Fischer
,
H.
Yuan
,
K.
Van Tichelen
,
S.
Keijers
,
J.
De Ridder
,
J.
Degroote
,
J.
Vierendeels
,
H.
Doolaard
,
V. R.
Gopala
, and
F.
Roelofs
, “
Benchmark exercise for fluid flow simulations in a liquid metal fast reactor fuel assembly
,”
Nucl. Eng. Des.
298
,
218
(
2016
).
32.
M.
Liu
,
X.
Wang
,
S.
Ni
,
L.
Liu
, and
H.
Gu
, “
Development of friction factor correlations for hexagonal and square bundles with rough rods based on CFD
,”
Ann. Nucl. Energy
174
,
109163
(
2022
).
33.
N. J.
Pelc
,
M. A.
Bernstein
,
A.
Shimakawa
, and
G. H.
Glover
, “
Encoding strategies for three-direction phase-contrast MR imaging of flow
,”
Magn. Reson. Imaging
1
,
405
(
1991
).
34.
M.
Bruschewski
,
D.
Freudenhammer
,
W. B.
Buchenberg
,
H.-P.
Schiffer
, and
S.
Grundmann
, “
Estimation of the measurement uncertainty in magnetic resonance velocimetry based on statistical models
,”
Exp. Fluids
57
,
83
(
2016
).
35.
O.
Bovati
,
M. A.
Yildiz
,
Y.
Hassan
, and
R.
Vaghetto
, “
RANS simulations for transition and turbulent flow regimes in wire-wrapped rod bundles
,”
Int. J. Heat Fluid Flow
90
,
108838
(
2021
).
36.
K.
Lyu
,
X.
Sheng
,
X.
Ma
,
H.
Wang
,
W.
Shi
, and
Z.
Cheng
, “
Numerical investigation of thermal hydraulic behaviors in wire-wrapped bundle with smaller wire diameter of peripheral rods
,”
Ann. Nucl. Energy
163
,
108526
(
2021
).
37.
O.
Bovati
and
Y.
Hassan
, “
Implementation of a CFD methodology for computing subchannel friction factors and split parameters in wire-wrapped rod bundles
,”
Nucl. Eng. Des.
397
,
111952
(
2022
).
38.
Y.
Liang
,
D.
Zhang
,
Y.
Chen
,
K.
Zhang
,
W.
Tian
,
S.
Qiu
, and
G.
Su
, “
An experiment study of pressure drop and flow distribution in subchannels of a 37-pin wire-wrapped rod bundle
,”
Appl. Therm. Eng.
174
,
115283
(
2020
).
You do not currently have access to this content.