This article is a follow-up research of our recent paper [Charles and Narasimhamurthy, Phys. Fluids, 34(10), 105111 (2022b)] on direct numerical simulation (DNS) of planar turbulent jets with a pintle orifice. In the present study, we compare the DNS results of three different pintle-jet configurations (30°, 45°, and 60°), which vary only by the chamfering angle (α) within the pintle-shaped orifice. Instantaneous flow fields show the large amplitude oscillation of jets and how the oblique shedding of vortical structures correlates with the inlet condition. We found that as α reduces, the jet experiences more flapping, high turbulent intensity in the near-to-intermediate field, and less coherence in Kelvin–Helmholtz (KH) vortices in the near-field. The vortex dynamics are studied using Q-criterion, λ2-criterion, and enstrophy dynamics, and the effects of the pintle wall on the onset of large-scale motions are investigated. Further, the higher order statistics are evaluated, and it shows the inlet-dependent variations in the jet flow characteristics downstream. The energy balance between the large- and small-scale eddies is studied using a turbulent kinetic energy budget. In addition, we employ quadrant analysis of Reynolds shear stresses along three downstream regions of the jet—initial shear layer, interaction region, and similarity region—and show the effect of turbulence behavior on those mixing regions. The small-scale turbulence length scales, such as the Kolmogorov scale and Taylor microscales, are studied. In addition, we compute the turbulent Reynolds number for each case. Furthermore, the invariant analysis using a barycentric map shows the anisotropy behavior of turbulence in large- and small-scales, where it shows 30° case return-to-isotropy faster than 60° case. The above findings can help in the modeling of turbulent jets with varying orifice conditions and may also facilitate the design of pintle-shaped orifices in airblast atomizers.

1.
Amano
,
R. S.
and
Sundén
,
B.
,
Impingement Jet Cooling in Gas Turbines
(
WIT Press
,
2014
), Vol.
25
.
2.
Antonia
,
R. A.
and
Zhao
,
Q.
, “
Effect of initial conditions on a circular jet
,”
Exp. Fluids
31
(
3
),
319
323
(
2001
).
3.
Bradbury
,
L.
, “
The structure of a self-preserving turbulent plane jet
,”
J. Fluid Mech.
23
(
1
),
31
64
(
1965
).
4.
Bradshaw
,
P.
, “
The effect of initial conditions on the development of a free shear layer
,”
J. Fluid Mech.
26
(
2
),
225
236
(
1966
).
5.
Chapman
,
D. C.
, “
Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model
,”
J. Phys. Oceanogr.
15
(
8
),
1060
1075
(
1985
).
6.
Charles
,
P.
and
Narasimhamurthy
,
V. D.
, “
Evaluation of outflow boundary conditions in DNS of turbulent jet flows
,” in
Recent Advances in Applied Mechanics, Lecture Notes in Mechanical Engineering
, edited by
T.
Tadepalli
and
V.
Narayanamurthy
(
Springer
,
2022a
), pp.
69
86
.
7.
Charles
,
P.
and
Narasimhamurthy
,
V. D.
, “
Direct numerical simulation of planar turbulent jets: Effect of a pintle orifice
,”
Phys. Fluids
34
(
10
),
105111
(
2022b
).
8.
Crow
,
S. C.
and
Champagne
,
F.
, “
Orderly structure in jet turbulence
,”
J. Fluid Mech.
48
(
3
),
547
591
(
1971
).
9.
Deo
,
R. C.
, “
Comparative analysis of turbulent plane jets from a sharp-edged orifice, a beveled-edge orifice and a radially contoured nozzle
,”
Int. J. Mech., Ind. Sci. Eng.
7
(
12
),
1471
1480
(
2013
).
10.
Deo
,
R. C.
,
Mi
,
J.
, and
Nathan
,
G. J.
, “
Experimental investigations of the effect of Reynolds number on a plane jet
,” in
Proceedings of the 16th Australasian Fluid Mechanics Conference
(School of Engineering, University of Queensland, 2007), pp.
265
268
.
11.
Deo
,
R. C.
,
Mi
,
J.
, and
Nathan
,
G. J.
, “
The influence of nozzle-exit geometric profile on statistical properties of a turbulent plane jet
,”
Exp. Therm. Fluid Sci.
32
(
2
),
545
559
(
2007b
).
12.
Deo
,
R. C.
,
Nathan
,
G. J.
, and
Mi
,
J.
, “
Similarity analysis of the momentum field of a subsonic, plane air jet with varying jet-exit and local Reynolds numbers
,”
Phys. Fluids
25
(
1
),
015115
(
2013
).
13.
Dimotakis
,
P. E.
, “
Turbulent mixing
,”
Annu. Rev. Fluid Mech.
37
,
329
356
(
2005
).
14.
Dimotakis
,
P. E.
and
Brown
,
G. L.
, “
The mixing layer at high Reynolds number: Large-structure dynamics and entrainment
,”
J. Fluid Mech.
78
(
3
),
535
560
(
1976
).
15.
Everitt
,
K.
and
Robins
,
A.
, “
The development and structure of turbulent plane jets
,”
J. Fluid Mech.
88
(
3
),
563
583
(
1978
).
16.
Flora
,
J. J.
, Jr.
and
Goldschmidt
,
V. W.
, “
Virtual origins of a free plane turbulent jet
,”
AIAA J.
7
(
12
),
2344
2346
(
1969
).
17.
Giles
,
D.
,
Salem
,
E. B.
, and
Bagheri
,
N.
, “
Turbulent jet flow characteristics of a dual-port, air-atomization spray nozzle
,”
J. Agric. Eng. Res.
49
,
133
149
(
1991
).
18.
Gohil
,
T. B.
,
Saha
,
A. K.
, and
Muralidhar
,
K.
, “
Numerical study of instability mechanisms in a circular jet at low Reynolds numbers
,”
Comput. Fluids
64
,
1
18
(
2012
).
19.
Goldschmidt
,
V.
and
Bradshaw
,
P
, “
Flapping of a plane jet
,”
Phys. Fluids
16
(
3
),
354
355
(
1973
).
20.
Grötzbach
,
G.
, “
Spatial resolution requirements for direct numerical simulation of the Rayleigh-Bénard convection
,”
J. Comput. Phys.
49
(
2
),
241
264
(
1983
).
21.
Gutmark
,
E.
and
Grinstein
,
F.
, “
Flow control with noncircular jets
,”
Annu. Rev. Fluid Mech.
31
(
1
),
239
272
(
1999
).
22.
Gutmark
,
E.
and
Gutmark
,
E.
, “
Mixing enhancement in non-circular jets
,” in
4th Shear Flow Control Conference
(American Institute of Aeronautics and Astronautics, 1997), p.
1876
.
23.
Gutmark
,
E.
and
Wygnanski
,
I.
, “
The planar turbulent jet
,”
J. Fluid Mech.
73
(
3
),
465
495
(
1976
).
24.
Heskestad
,
G.
, “
Hot-wire measurements in a plane turbulent jet
,”
J. Appl. Mech.
32
(
4
),
721
734
(
1965
).
25.
Ho
,
C.-M.
and
Gutmark
,
E.
, “
Vortex induction and mass entrainment in a small-aspect-ratio elliptic jet
,”
J. Fluid Mech.
179
,
383
405
(
1987
).
26.
Hussain
,
A.
and
Clark
,
A. R.
, “
Upstream influence on the near field of a plane turbulent jet
,”
Phys. Fluids
20
(
9
),
1416
1426
(
1977
).
27.
Javanappa
,
S. K.
and
Narasimhamurthy
,
V. D.
, “
Structure of turbulence in planar rough Couette flows
,”
Phys. Fluids
34
(
6
),
065124
(
2022
).
28.
Jeong
,
J.
and
Hussain
,
F.
, “
On the identification of a vortex
,”
J. Fluid Mech.
285
,
69
94
(
1995
).
29.
Jeong
,
J.
,
Hussain
,
F.
,
Schoppa
,
W.
, and
Kim
,
J.
, “
Coherent structures near the wall in a turbulent channel flow
,”
J. Fluid Mech.
332
,
185
214
(
1997
).
30.
Kandakure
,
M.
,
Patkar
,
V.
, and
Patwardhan
,
A.
, “
Characteristics of turbulent confined jets
,”
Chem. Eng. Process.
47
(
8
),
1234
1245
(
2008
).
31.
Klein
,
M.
,
Sadiki
,
A.
, and
Janicka
,
J.
, “
Investigation of the influence of the Reynolds number on a plane jet using direct numerical simulation
,”
Int. J. Heat Fluid Flow
24
(
6
),
785
794
(
2003
).
32.
Longmire
,
E. K.
,
Eaton
,
J. K.
, and
Elkins
,
C. J.
, “
Control of jet structure by crown-shaped nozzles
,”
AIAA J.
30
(
2
),
505
512
(
1992
).
33.
Mahmoodi-Jezeh
,
S.
and
Wang
,
B.-C.
, “
Direct numerical simulation of turbulent flow through a ribbed square duct
,”
J. Fluid Mech.
900
,
A18
(
2020
).
34.
Manhart
,
M.
, “
A zonal grid algorithm for DNS of turbulent boundary layers
,”
Comput. Fluids
33
(
3
),
435
461
(
2004
).
35.
Mi
,
J.
and
Nathan
,
G.
, “
Statistical properties of turbulent free jets issuing from nine differently-shaped nozzles
,”
Flow. Turbul. Combust.
84
(
4
),
583
606
(
2010
).
36.
Mi
,
J.
,
Nathan
,
G.
, and
Luxton
,
R.
, “
Mixing characteristics of a flapping jet from a self-exciting nozzle
,”
Flow, Turbul. Combust.
67
(
1
),
1
23
(
2001
).
37.
Mi
,
J.
,
Xu
,
M.
, and
Zhou
,
T.
, “
Reynolds number influence on statistical behaviors of turbulence in a circular free jet
,”
Phys. Fluids
25
(
7
),
075101
(
2013
).
38.
Nathan
,
G.
,
Mi
,
J.
,
Alwahabi
,
Z.
,
Newbold
,
G.
, and
Nobes
,
D.
, “
Impacts of a jet's exit flow pattern on mixing and combustion performance
,”
Prog. Energy Combust. Sci.
32
(
5–6
),
496
538
(
2006
).
39.
Orlanski
,
I.
, “
A simple boundary condition for unbounded hyperbolic flows
,”
J. Comput. Phys.
21
(
3
),
251
269
(
1976
).
40.
Peller
,
N.
,
Duc
,
A. L.
,
Tremblay
,
F.
, and
Manhart
,
M.
, “
High-order stable interpolations for immersed boundary methods
,”
Numer. Methods Fluids
52
(
11
),
1175
1193
(
2006
).
41.
Pope
,
S. B.
,
Turbulent Flows
(Cambridge University Press, 2000).
42.
Quinn
,
W.
, “
Upstream nozzle shaping effects on near field flow in round turbulent free jets
,”
Eur. J. Mech.-B/Fluids
25
(
3
),
279
301
(
2006
).
43.
Quinn
,
W.
, “
Experimental study of the near field and transition region of a free jet issuing from a sharp-edged elliptic orifice plate
,”
Eur. J. Mech.-B/Fluids
26
(
4
),
583
614
(
2007
).
44.
Sato
,
H.
, “
The stability and transition of a two-dimensional jet
,”
J. Fluid Mech.
7
(
1
),
53
80
(
1960
).
45.
Stanley
,
S.
and
Sarkar
,
S.
, “
Influence of nozzle conditions and discrete forcing on turbulent planar jets
,”
AIAA J.
38
(
9
),
1615
1623
(
2000
).
46.
Stanley
,
S.
,
Sarkar
,
S.
, and
Mellado
,
J.
, “
A study of the flow-field evolution and mixing in a planar turbulent jet using direct numerical simulation
,”
J. Fluid Mech.
450
,
377
407
(
2002
).
47.
Stone
,
H. L.
, “
Iterative solution of implicit approximations of multidimensional partial differential equations
,”
SIAM J. Numer. Anal.
5
(
3
),
530
558
(
1968
).
48.
Suresh
,
P.
,
Srinivasan
,
K.
,
Sundararajan
,
T.
, and
Das
,
S. K.
, “
Reynolds number dependence of plane jet development in the transitional regime
,”
Phys. Fluids
20
(
4
),
044105
(
2008
).
49.
Thomas
,
F.
and
Chu
,
H.
, “
An experimental investigation of the transition of a planar jet: Subharmonic suppression and upstream feedback
,”
Phys. Fluids A: Fluid Dyn.
1
(
9
),
1566
1587
(
1989
).
50.
Viggiano
,
B.
,
Dib
,
T.
,
Ali
,
N.
,
Mastin
,
L. G.
,
Cal
,
R. B.
, and
Solovitz
,
S. A.
, “
Turbulence, entrainment and low-order description of a transitional variable-density jet
,”
J. Fluid Mech.
836
,
1009
1049
(
2018
).
51.
Wallace
,
J. M.
, “
Quadrant analysis in turbulence research: History and evolution
,”
Annu. Rev. Fluid Mech.
48
,
131
158
(
2016
).
52.
Wallace
,
J. M.
and
Brodkey
,
R. S.
, “
Reynolds stress and joint probability density distributions in the u-v plane of a turbulent channel flow
,”
Phys. Fluids
20
(
3
),
351
355
(
1977
).
53.
Wallace
,
J. M.
,
Brodkey
,
R. S.
, and
Eckelmann
,
H.
, “
Pattern-recognized structures in bounded turbulent shear flows
,”
J. Fluid Mech.
83
(
4
),
673
693
(
1977
).
54.
Webster
,
D. R.
and
Longmire
,
E. K.
, “
Vortex rings from cylinders with inclined exits
,”
Phys. Fluids
10
(
2
),
400
416
(
1998
).
55.
Wicker
,
R. B.
and
Eaton
,
J. K.
, “
Near field of a coaxial jet with and without axial excitation
,”
AIAA J.
32
(
3
),
542
546
(
1994
).
56.
Zaman
,
K.
and
Hussain
,
A.
, “
Vortex pairing in a circular jet under controlled excitation. Part 1. General jet response
,”
J. Fluid Mech.
101
(
3
),
449
491
(
1980
).
You do not currently have access to this content.