The linear-time-invariance notion to the Koopman analysis is a recent advance in fluid mechanics [Li et al., “The linear-time-invariance notion to the Koopman analysis: The architecture, pedagogical rendering, and fluid–structure association,” Phys. Fluids 34(12), 125136 (2022c) and Li et al., “The linear-time-invariance notion of the Koopman analysis—Part 2. Dynamic Koopman modes, physics interpretations and phenomenological analysis of the prism wake,” J. Fluid Mech. 959, A15 (2023a)], targeting the long-standing issue of correlating nonlinear excitation and response phenomena in fluid–structure interactions (FSI), or, in the simplified case, flow over rigid obstacles. Continuing the serial research, this work presents a data-driven, Koopman-inspired methodology to decouple nonlinear FSI by establishing cause-and-effect correspondences between structure surface pressure and the flow field. Exploiting unique features of the Koopman operator, the new methodology renders dynamic visualizations of in-sync, fluid–structure-coupled Koopman modes possible, fostering phenomenological analysis and statistical quantifications of FSI energy transfers. Instantaneous contribution contours and densities offer new angles to evaluate pathways of energy amplification and diminution. The methodology enables better descriptions and interpretations of phenomena occurring in the flow and on the boundary (walls) of an FSI domain and readily applies to a broad spectrum of engineering problems given its data-driven nature.

1.
Alford-Lago
,
D. J.
,
Curtis
,
C. W.
,
Ihler
,
A. T.
, and
Issan
,
O.
, “
Deep learning enhanced dynamic mode decomposition
,”
Chaos
32
,
033116
(
2022
).
2.
Amor
,
C.
,
Schlatter
,
P.
,
Vinuesa
,
R.
, and
Le Clainche
,
S.
, “
Higher-order dynamic mode decomposition on-the-fly: A low-order algorithm for complex fluid flows
,”
J. Comput. Phys.
475
,
111849
(
2023
).
3.
Arbabi
,
H.
and
Mezić
,
I.
, “
Ergodic theory, dynamic mode decomposition, and computation of spectral properties of the Koopman operator
,”
SIAM J. Appl. Dyn. Syst.
16
,
2096
2126
(
2017
).
4.
Avila
,
A. M.
and
Mezić
,
I.
, “
Data-driven analysis and forecasting of highway traffic dynamics
,”
Nat. Commun.
11
,
2090
(
2020
).
5.
Axås
,
J.
and
Haller
,
G.
, “
Model reduction for nonlinearizable dynamics via delay-embedded spectral submanifolds
,”
Nonlinear Dyn.
111
,
22079
22099
(
2023
).
6.
Bagheri
,
S.
, “
Koopman-mode decomposition of the cylinder wake
,”
J. Fluid Mech.
726
,
596
623
(
2013
).
7.
Begiashvili
,
B.
,
Groun
,
N.
,
Garicano-Mena
,
J.
,
Le Clainche
,
S.
, and
Valero
,
E.
, “
Data-driven modal decomposition methods as feature detection techniques for flow problems: A critical assessment
,”
Phys. Fluids
35
,
041301
(
2023
).
8.
Bistrian
,
D. A.
and
Navon
,
I. M.
, “
Efficiency of randomised dynamic mode decomposition for reduced order modelling
,”
Int. J. Comput. Fluid Dyn.
32
,
88
103
(
2018
).
9.
Bistrian
,
D. A.
and
Navon
,
I. M.
, “
Randomized dynamic mode decomposition for nonintrusive reduced order modelling
,”
Int. J. Numer. Methods Eng.
112
,
3
25
(
2017
).
10.
Bloor
,
M. S.
, “
The transition to turbulence in the wake of a circular cylinder
,”
J. Fluid Mech.
19
,
290
304
(
1964
).
11.
Bollt
,
E. M.
and
Santitissadeekorn
,
N.
,
Applied and Computational Measurable Dynamics
(
Society for Industrial and Applied Mathematics
,
2013
).
12.
Bramburger
,
J. J.
and
Fantuzzi
,
G.
, “
Auxiliary functions as Koopman observables: Data-driven analysis of dynamical systems via polynomial optimization
,”
J. Nonlinear Sci.
34
(
1
),
8
(
2024
).
13.
Brunton
,
S. L.
,
Brunton
,
B. W.
,
Proctor
,
J. L.
, and
Kutz
,
J. N.
, “
Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control
,”
PLoS One
11
,
e0150171
(
2016
).
14.
Brunton
,
S. L.
,
Noack
,
B. R.
, and
Koumoutsakos
,
P.
, “
Machine learning for fluid mechanics
,”
Annu. Rev. Fluid Mech.
52
,
477
508
(
2020
).
15.
Budišić
,
M.
,
Mohr
,
R.
, and
Mezić
,
I.
, “
Applied Koopmanism
,”
Chaos
22
,
047510
(
2012
).
16.
Brunton
,
S. L.
,
Proctor
,
J. L.
,
Tu
,
J. H.
, and
Nathan Kutz
,
J.
, “
Compressed sensing and dynamic mode decomposition
,”
J. Comput. Dyn.
2
,
165
191
(
2015
).
17.
Chen
,
K. K.
,
Tu
,
J. H.
, and
Rowley
,
C. W.
, “
Variants of dynamic mode decomposition: Boundary condition, Koopman, and Fourier analyses
,”
J. Nonlinear Sci.
22
,
887
915
(
2012
).
18.
Chen
,
Z.
,
Bai
,
J.
,
Wang
,
S.
,
Xue
,
X.
,
Li
,
K.
,
Tse
,
K. T.
,
Li
,
C. Y.
, and
Lin
,
C.
, “
The role of transverse inclination on the flow phenomenology around cantilevered prisms and the tripole wake mode
,”
J. Fluids Struct.
118
,
103837
(
2023a
).
19.
Chen
,
Z.
,
Chen
,
X.
,
Liu
,
J.
,
Cen
,
L.
, and
Gui
,
W.
, “
Learning model predictive control of nonlinear systems with time-varying parameters using Koopman operator
,”
Appl. Math. Comput.
470
,
128577
(
2024
).
20.
Chen
,
Z.
,
Fu
,
X.
,
Xu
,
Y.
,
Li
,
C. Y.
,
Kim
,
B.
, and
Tse
,
K. T.
, “
A perspective on the aerodynamics and aeroelasticity of tapering: Partial reattachment
,”
J. Wind Eng. Ind. Aerodyn.
212
,
104590
(
2021a
).
21.
Chen
,
Z.
,
Huang
,
H.
,
Tse
,
T. K. T.
,
Xu
,
Y.
, and
Li
,
C. Y.
, “
Characteristics of unsteady aerodynamic forces on an aeroelastic prism: A comparative study
,”
J. Wind Eng. Ind. Aerodyn.
205
,
104325
(
2020
).
22.
Chen
,
Z.
,
Wang
,
Y.
,
Wang
,
S.
,
Huang
,
H.
,
Tse
,
K. T.
,
Li
,
C. Y.
, and
Lin
,
C.
, “
Decoupling bi-directional fluid–structure interactions by the Koopman theory: Actualizing one-way subcases and the role of crosswind structure motion
,”
Phys. Fluids
34
,
095103
(
2022
).
23.
Chen
,
Z.
,
Xu
,
Y.
,
Hua
,
J.
,
Xu
,
F.
,
Tse
,
K. T.
,
Huang
,
L.
, and
Xue
,
X.
, “
Unsteady aerodynamic forces on a tapered prism during the combined vibration of VIV and galloping
,”
Nonlinear Dyn.
107
(
1
),
599
615
(
2021b
).
24.
Chen
,
Z.
,
Zhang
,
L.
,
Li
,
K.
,
Xue
,
X.
,
Zhang
,
X.
,
Kim
,
B.
, and
Li
,
C. Y.
, “
Machine-learning prediction of aerodynamic damping for buildings and structures undergoing flow-induced vibrations
,”
J. Build. Eng.
63
,
105374
(
2023b
).
25.
Colbrook
,
M. J.
,
Ayton
,
L. J.
, and
Szőke
,
M.
, “
Residual dynamic mode decomposition: Robust and verified Koopmanism
,”
J. Fluid Mech.
955
,
A21
(
2023
).
26.
Colbrook
,
M. J.
,
Li
,
Q.
,
Raut
,
R. V.
, and
Townsend
,
A.
, “
Beyond expectations: Residual dynamic mode decomposition and variance for stochastic dynamical systems
,”
Nonlinear Dyn.
112
,
2037
2061
(
2024
).
27.
Deem
,
E. A.
,
Cattafesta
III,
L. N.
,
Hemati
,
M. S.
,
Zhang
,
H.
,
Rowley
,
C.
, and
Mittal
,
R.
, “
Adaptive separation control of a laminar boundary layer using online dynamic mode decomposition
,”
J. Fluid Mech.
903
,
A21
(
2020
).
28.
Ding
,
J.
,
Zhao
,
P.
,
Liu
,
C.
,
Wang
,
X.
,
Xie
,
R.
, and
Liu
,
H.
, “
From irregular to continuous: The deep Koopman model for time series forecasting of energy equipment
,”
Appl Energy
364
,
123138
(
2024
).
29.
Dotto
,
A.
,
Lengani
,
D.
,
Simoni
,
D.
, and
Tacchella
,
A.
, “
Dynamic mode decomposition and Koopman spectral analysis of boundary layer separation-induced transition
,”
Phys. Fluids
33
,
104104
(
2021
).
30.
Duke
,
D.
,
Soria
,
J.
, and
Honnery
,
D.
, “
An error analysis of the dynamic mode decomposition
,”
Exp. Fluids
52
,
529
542
(
2012
).
31.
Erichson
,
N. B.
and
Donovan
,
C.
, “
Randomized low-rank Dynamic Mode Decomposition for motion detection
,”
Comput. Vision Image Understanding
146
,
40
50
(
2016
).
32.
Erichson
,
N. B.
,
Mathelin
,
L.
,
Kutz
,
J. N.
, and
Brunton
,
S. L.
, “
Randomized dynamic mode decomposition
,”
SIAM J. Appl. Dyn. Syst.
18
,
1867
1891
(
2019
).
33.
Fan
,
X.
,
Zhang
,
X.
,
Weerasuriya
,
A. U.
,
Hang
,
J.
,
Zeng
,
L.
,
Luo
,
Q.
,
Li
,
C. Y.
, and
Chen
,
Z.
, “
Numerical investigation of the effects of environmental conditions, droplet size, and social distancing on droplet transmission in a street canyon
,”
Build. Environ.
221
,
109261
(
2022
).
34.
Froyland
,
G.
,
Gottwald
,
G. A.
, and
Hammerlindl
,
A.
, “A computational method to extract macroscopic variables and their dynamics in multiscale systems,”
SIAM J. Appl. Dyn. Syst.
13
(
4
),
1816
1846
(
2014
).
35.
Fu
,
Y.
,
Lin
,
X.
,
Li
,
L.
,
Chu
,
Q.
,
Liu
,
H.
,
Zheng
,
X.
,
Liu
,
C.-H.
,
Chen
,
Z.
,
Lin
,
C.
,
Tse
,
T. K. T.
, and
Li
,
C. Y.
, “
A POD-DMD augmented procedure to isolating dominant flow field features in a street canyon
,”
Phys. Fluids
35
,
025112
(
2023
).
36.
Garicano-Mena
,
J.
,
Li
,
B.
,
Ferrer
,
E.
, and
Valero
,
E.
, “
A composite dynamic mode decomposition analysis of turbulent channel flows
,”
Phys. Fluids
31
,
115102
(
2019
).
37.
Han
,
W.
and
Stankovic
,
A. M.
, “
Model-predictive control design for power system oscillation damping via excitation—A data-driven approach
,”
IEEE Trans. Power Syst.
38
,
1176
1188
(
2023
).
38.
He
,
G.
,
Wang
,
J.
, and
Pan
,
C.
, “
Initial growth of a disturbance in a boundary layer influenced by a circular cylinder wake
,”
J. Fluid Mech.
718
,
116
130
(
2013
).
39.
He
,
Y.
,
Zhang
,
L.
,
Chen
,
Z.
, and
Li
,
C. Y.
, “
A framework of structural damage detection for civil structures using a combined multi-scale convolutional neural network and echo state network
,”
Eng. Comput.
39
,
1771
1719
(
2022
).
40.
Helmholtz
,
H.
, “
Über integrale der hydrodynamischen gleichungen, welche den wirbelbewegungen entsprechen
,”
J. Reine Angew. Math.
1858
,
25
55
.
41.
Herrmann
,
B.
,
Baddoo
,
P. J.
,
Semaan
,
R.
,
Brunton
,
S. L.
, and
McKeon
,
B. J.
, “Data-driven resolvent analysis,”
J. Fluid Mech.
918
,
A10
(
2021
).
42.
Hong
,
S.
,
Huang
,
G.
,
Yang
,
Y.
, and
Liu
,
Z.
, “
Introduction of DMD method to study the dynamic structures of a three-dimensional centrifugal compressor with and without flow control
,”
Energies
11
,
3098
(
2018
).
43.
Huhn
,
Q. A.
,
Tano
,
M. E.
,
Ragusa
,
J. C.
, and
Choi
,
Y.
, “
Parametric dynamic mode decomposition for reduced order modeling
,”
J. Comput. Phys.
475
,
111852
(
2023
).
44.
Hunt
,
J. C. R.
,
Wray
,
A. A.
, and
Moin
,
P.
, “
Eddies, streams, and convergence zones in turbulent flows
,” in
Studying Turbulence Using Numerical Simulation Databases, Proceedings of the Summer Program
(
NASA
,
1988
), pp.
193
208
.
45.
Hussain
,
A. K. M. F.
, “
Coherent structures and turbulence
,”
J. Fluid Mech.
173
,
303
356
(
1986
).
46.
Jang
,
H. K.
,
Ozdemir
,
C. E.
,
Liang
,
J. H.
, and
Tyagi
,
M.
, “
Oscillatory flow around a vertical wall-mounted cylinder: Dynamic mode decomposition
,”
Phys. Fluids
33
,
025113
(
2021
).
47.
Jeon
,
D.
and
Gharib
,
M.
, “
On the relationship between the vortex formation process and cylinder wake vortex patterns
,”
J. Fluid Mech.
519
,
161
181
(
2004
).
48.
Jovanović
,
M. R.
,
Schmid
,
P. J.
, and
Nichols
,
J. W.
, “
Sparsity-promoting dynamic mode decomposition
,”
Phys. Fluids
26
,
24103
(
2014
).
49.
Kareem
,
A.
and
Cermak
,
J. E.
, “
Pressure fluctuations on a square building model in boundary-layer flows
,”
J. Wind Eng. Ind. Aerodyn.
16
,
17
41
(
1984
).
50.
Koopman
,
B. O.
, “
Hamiltonian systems and transformation in Hilbert space
,”
Proc. Natl. Acad. Sci. U. S. A.
17
,
315
318
(
1931
).
51.
Koopman
,
B. O.
and
Neumann
,
J. V.
, “
Dynamical systems of continuous spectra
,”
Proc. Natl. Acad. Sci. U. S. A.
18
,
255
263
(
1932
).
52.
Korda
,
M.
and
Mezić
,
I.
, “
On convergence of extended dynamic mode decomposition to the Koopman operator
,”
J. Nonlinear Sci.
28
,
687
710
(
2018
).
53.
Kurdila
,
A. J.
,
Paruchuri
,
S. T.
,
Powell
,
N.
,
Guo
,
J.
,
Bobade
,
P.
,
Estes
,
B.
, and
Wang
,
H.
, “
Approximation of discrete and orbital Koopman operators over subsets and manifolds
,”
Nonlinear Dyn.
112
,
6291
6327
(
2024
).
54.
Kuttichira
,
D. P.
,
Gopalakrishnan
,
E. A.
,
Menon
,
V. K.
, and
Soman
,
K. P.
, “
Stock price prediction using dynamic mode decomposition
,” in
International Conference on Advances in Computing, Communications and Informatic (ICACCI)
(
IEEE
,
2017
), pp.
55
60
.
55.
Kutz
,
J. N.
,
Brunton
,
S. L.
,
Brunton
,
B. W.
, and
Proctor
,
J. L.
, “
Dynamic mode decomposition: Data-driven modeling of complex systems
” (Society for Industrial and Applied Mathematics, Philadelphia, PA,
2016a
).
56.
Kutz
,
J. N.
,
Fu
,
X.
, and
Brunton
,
S. L.
, “
Multiresolution dynamic mode decomposition
,”
SIAM J. Appl. Dyn. Syst.
15
,
713
735
(
2016b
).
57.
Lander
,
D. C.
,
Moore
,
D. M.
,
Letchford
,
C. W.
, and
Amitay
,
M.
, “
Scaling of square-prism shear layers
,”
J. Fluid Mech.
849
,
1096
1119
(
2018
).
58.
Le Clainche
,
S.
and
Vega
,
J. M.
, “
Analyzing nonlinear dynamics via data-driven dynamic mode decomposition-like methods
,”
Complexity
2018
,
6920783
.
59.
Li
,
C. Y.
,
Chen
,
Z.
,
Tse
,
T. K. T.
,
Weerasuriya
,
A. U.
,
Zhang
,
X.
,
Fu
,
Y.
, and
Lin
,
X.
, “
The linear-time-invariance notion of the Koopman analysis—Part 2. Dynamic Koopman modes, physics interpretations and phenomenological analysis of the prism wake
,”
J. Fluid Mech.
959
,
A15
(
2023a
).
60.
Li
,
C. Y.
,
Chen
,
Z.
,
Tse
,
T. K. T.
,
Weerasuriya
,
A. U.
,
Zhang
,
X.
,
Fu
,
Y.
, and
Lin
,
X.
, “
A parametric and feasibility study for data sampling of the dynamic mode decomposition: Range, resolution, and universal convergence states
,”
Nonlinear Dyn.
107
,
3683
3707
(
2022a
).
61.
Li
,
C. Y.
,
Chen
,
Z.
,
Tse
,
T. K. T.
,
Weerasuriya
,
A. U.
,
Zhang
,
X.
,
Fu
,
Y.
, and
Lin
,
X.
, “
A parametric and feasibility study for data sampling of the dynamic mode decomposition: Spectral insights and further explorations
,”
Phys. Fluids
34
,
035102
(
2022b
).
62.
Li
,
C. Y.
,
Chen
,
Z.
,
Tse
,
T. K. T.
,
Weerasuriya
,
A. U.
,
Zhang
,
X.
,
Fu
,
Y.
, and
Lin
,
X.
, “
Establishing direct phenomenological connections between fluid and structure by the Koopman-Linearly Time-Invariant analysis
,”
Phys. Fluids
33
,
121707
(
2021
).
63.
Li
,
C. Y.
,
Chen
,
Z.
,
Weerasuriya
,
A. U.
,
Zhang
,
X.
,
Lin
,
X.
,
Zhou
,
L.
,
Fu
,
Y.
, and
Tse
,
T. K. T.
, “
Best practice guidelines for the dynamic mode decomposition from a wind engineering perspective
,”
J. Wind Eng. Ind. Aerodyn.
241
,
105506
(
2023b
).
64.
Li
,
C. Y.
,
Chen
,
Z.
,
Zhang
,
X.
,
Tse
,
T. K. T.
, and
Lin
,
C.
, “
Koopman analysis by the dynamic mode decomposition in wind engineering
,”
J. Wind Eng. Ind. Aerodyn.
232
,
105295
(
2023c
).
65.
Li
,
C. Y.
,
Chen
,
Z.
,
Lin
,
X.
,
Weerasuriya
,
A. U.
,
Zhang
,
X.
,
Fu
,
Y.
, and
Tse
,
T. K. T.
, “
The linear-time-invariance notion to the Koopman analysis: The architecture, pedagogical rendering, and fluid–structure association
,”
Phys. Fluids
34
,
125136
(
2022c
).
66.
Li
,
C. Y.
,
Tse
,
T. K. T.
, and
Hu
,
G.
, “
Dynamic Mode Decomposition on pressure flow field analysis: Flow field reconstruction, accuracy, and practical significance
,”
J. Wind Eng. Ind. Aerodyn.
205
,
104278
(
2020a
).
67.
Li
,
C. Y.
,
Tse
,
T. K. T.
, and
Hu
,
G.
, “
Reconstruction of flow field around a square prism using dynamic mode decomposition
,” in
The 4th Hong Kong Wind Engineering Society Workshop (HKWES4)
, 7–8 Feb, Hong Kong, China,
2020b
.
68.
Li
,
Q.
,
Dietrich
,
F.
,
Bollt
,
E. M.
, and
Kevrekidis
,
I. G.
, “
Extended dynamic mode decomposition with dictionary learning: A data-driven adaptive spectral decomposition of the Koopman operator
,”
Chaos
27
,
103111
(
2017
).
69.
Liu
,
C.
,
Gao
,
Y.
,
Tian
,
S.
, and
Dong
,
X.
, “
Rortex—A new vortex vector definition and vorticity tensor and vector decompositions
,”
Phys. Fluids
30
,
035103
(
2018
).
70.
Liu
,
C.
,
Wang
,
Y.
,
Yang
,
Y.
, and
Duan
,
Z.
, “
New omega vortex identification method
,”
Sci. China Phys., Mech. Astron.
59
,
684711
(
2016
).
71.
Lu
,
H.
and
Tartakovsky
,
D. M.
, “
Data-driven models of nonautonomous systems
,”
J. Comput. Phys.
507
,
112976
(
2024
).
72.
Luo
,
X.
and
Kareem
,
A.
, “
Dynamic mode decomposition of random pressure fields over bluff bodies
,”
J. Eng. Mech.
147
,
04021007
(
2021
).
73.
Luo
,
X.
and
Kareem
,
A.
, “
Bayesian deep learning with hierarchical prior: Predictions from limited and noisy data
,”
Struct. Saf.
84
,
101918
(
2020
).
74.
Luo
,
X.
and
Kareem
,
A.
, “
Deep convolutional neural networks for uncertainty propagation in random fields
,”
Comput.-Aided Civil Infrastruct. Eng.
34
,
1043
1054
(
2019
).
75.
Lusch
,
B.
,
Kutz
,
J. N.
, and
Brunton
,
S. L.
, “Deep learning for universal linear embeddings of nonlinear dynamics,”
Nat. Commun.
9
(
1
),
4950
(
2018
).
76.
Magionesi
,
F.
,
Dubbioso
,
G.
,
Muscari
,
R.
, and
Di Mascio
,
A.
, “
Modal analysis of the wake past a marine propeller
,”
J. Fluid Mech.
855
,
469
502
(
2018
).
77.
Mann
,
J.
and
Kutz
,
J. N.
, “
Dynamic mode decomposition for financial trading strategies
,”
Quant. Finance
16
,
1643
1655
(
2016
).
78.
Mauroy
,
A.
and
Mezić
,
I.
, “
Global stability analysis using the eigenfunctions of the Koopman operator
,”
IEEE Trans. Autom. Control
61
,
3356
3369
(
2016
).
79.
Mauroy
,
A.
and
Mezić
,
I.
, “
On the use of Fourier averages to compute the global isochrons of (quasi)periodic dynamics
,”
Chaos
22
,
033112
(
2012
).
80.
Menon
,
K.
and
Mittal
,
R.
, “
Dynamic mode decomposition based analysis of flow over a sinusoidally pitching airfoil
,”
J. Fluids Struct.
94
,
102886
(
2020
).
81.
Mezić
,
I.
, “
Analysis of fluid flows via spectral properties of the Koopman operator
,”
Annu. Rev. Fluid Mech.
45
,
357
378
(
2013
).
82.
Mezić
,
I.
, “
Spectral properties of dynamical systems, model reduction and decompositions
,”
Nonlinear Dyn.
41
,
309
325
(
2005
).
83.
Mezić
,
I.
,
Drmač
,
Z.
,
Črnjarić
,
N.
,
Maćešić
,
S.
,
Fonoberova
,
M.
,
Mohr
,
R.
,
Avila
,
A. M.
,
Manojlović
,
I.
, and
Andrejčuk
,
A.
, “
A Koopman operator-based prediction algorithm and its application to COVID-19 pandemic and influenza cases
,”
Sci. Rep.
14
(
1
),
5788
(
2024
).
84.
Morgenthal
,
G.
, “
Fluid-structure interaction in bluff-body aerodynamics and long-span bridge design: Phenomena and methods
,”
Tribol. Int.
5
,
83
84
(
1972
).
85.
Muld
,
T. W.
,
Efraimsson
,
G.
, and
Henningson
,
D. S.
, “
Mode decomposition on surface-mounted cube
,”
Flow, Turbul. Combust.
88
,
279
310
(
2012
).
86.
Noack
,
B. R.
,
Stankiewicz
,
W.
,
Morzyński
,
M.
, and
Schmid
,
P. J.
, “
Recursive dynamic mode decomposition of transient and post-transient wake flows
,”
J. Fluid Mech.
809
,
843
872
(
2016
).
87.
Nüske
,
F.
,
Peitz
,
S.
,
Philipp
,
F.
,
Schaller
,
M.
, and
Worthmann
,
K.
, “
Finite-data error bounds for Koopman-based prediction and control
,”
J. Nonlinear Sci.
33
(
1
),
14
(
2023
).
88.
Otto
,
S. E.
and
Rowley
,
C. W.
, “
Linearly recurrent autoencoder networks for learning dynamics
,”
SIAM J. Appl. Dyn. Syst.
18
,
558
593
(
2019
).
89.
Page
,
J.
and
Kerswell
,
R. R.
, “
Koopman mode expansions between simple invariant solutions
,”
J. Fluid Mech.
879
,
1
27
(
2019
).
90.
Paidoussis
,
M. P.
,
Price
,
S. J.
, and
de Langre
,
E.
,
Fluid-Structure Interactions: Cross-Flow-Induced Instabilities
(
Cambridge University Press
,
Cambridge
,
2010
).
91.
Patel
,
V.
,
Parthasarathy
,
S.
,
Shinde
,
V. J.
, and
Gaitonde
,
D. V.
, “
Machine learning based model reduction for fluid-structure interaction
,” AIAA Paper No. AIAA 2021-1747,
2021
.
92.
Philipp
,
F. M.
,
Schaller
,
M.
,
Worthmann
,
K.
,
Peitz
,
S.
, and
Nüske
,
F.
, “
Error bounds for kernel-based approximations of the Koopman operator
,”
Appl. Comput. Harmonic Anal.
71
,
101657
(
2024
).
93.
Ping
,
H.
,
Zhu
,
H.
,
Zhang
,
K.
,
Zhou
,
D.
,
Bao
,
Y.
,
Xu
,
Y.
, and
Han
,
Z.
, “
Dynamic mode decomposition based analysis of flow past a transversely oscillating cylinder
,”
Phys. Fluids
33
,
033604
(
2021
).
94.
Pope
,
S. B.
,
Turbulent Flows
(
Cambridge University Press
,
2000
).
95.
Proctor
,
J. L.
,
Brunton
,
S. L.
, and
Kutz
,
J. N.
, “
Dynamic mode decomposition with control
,”
SIAM J. Appl. Dyn. Syst.
15
,
142
161
(
2016
).
96.
Rahmani
,
M.
and
Redkar
,
S.
, “
Fractional robust data-driven control of nonlinear MEMS gyroscope
,”
Nonlinear Dyn.
111
,
19901
19910
(
2023
).
97.
Rowley
,
C. W.
and
Dawson
,
S. T. M.
, “
Model reduction for flow analysis and control
,”
Annu. Rev. Fluid Mech.
49
,
387
417
(
2017
).
98.
Rowley
,
C. W.
,
Mezić
,
I.
,
Bagheri
,
S.
,
Schlatter
,
P.
, and
Henningson
,
D. S.
, “
Spectral analysis of nonlinear flows
,”
J. Fluid Mech.
641
,
115
127
(
2009
).
99.
Sarpkaya
,
T.
, “
A critical review of the intrinsic nature of vortex-induced vibrations
,”
J. Fluids Struct.
19
,
389
447
(
2004
).
100.
Sarpkaya
,
T.
, “
Vortex-induced oscillations: A selective review
,”
J. Appl. Mech.
46
,
241
258
(
1979
).
101.
Savoeurn
,
N.
,
Janya-Anurak
,
C.
, and
Uthaisangsuk
,
V.
, “
Determination of dynamic characteristics of lattice structure using dynamic mode decomposition
,”
J. Appl. Mech.
91
,
071003
(
2024
).
102.
Sayadi
,
T.
,
Schmid
,
P. J.
,
Richecoeur
,
F.
, and
Durox
,
D.
, “
Parametrized data-driven decomposition for bifurcation analysis, with application to thermo-acoustically unstable systems
,”
Phys. Fluids
27
,
37102
(
2015
).
103.
Schmid
,
P. J.
, “
Dynamic mode decomposition and its variants
,”
Annu. Rev. Fluid Mech.
54
,
225
254
(
2022
).
104.
Schmid
,
P. J.
, “
Dynamic mode decomposition of numerical and experimental data
,”
J. Fluid Mech.
656
,
5
28
(
2010
).
105.
Schmid
,
P. J.
,
Li
,
L.
,
Juniper
,
M. P.
, and
Pust
,
O.
, “
Applications of the dynamic mode decomposition
,”
Theor. Comput. Fluid Dyn.
25
,
249
259
(
2011
).
106.
Schmid
,
P. J.
and
Sesterhenn
,
J.
, “
Dynamic mode decomposition of numerical and experimental data
,” in
61st APS Meeting American Physical Society, San Antonio, Texas
(APS,
2008
), p.
208
.
107.
Seenivasaharagavan
,
G. S.
,
Korda
,
M.
,
Arbabi
,
H.
, and
Mezić
,
I.
, “
Mean subtraction and mode selection in dynamic mode decomposition
,” arXiv:2105.03607 (
2021
).
108.
Soleimani
,
M.
,
Irani
,
F. N.
,
Yadegar
,
M.
, and
Davoodi
,
M.
, “
Multi-objective optimization of building HVAC operation: Advanced strategy using Koopman predictive control and deep learning
,”
Build. Environ.
248
,
111073
(
2024
).
109.
Song
,
H.
,
Ba
,
Y.
,
Chen
,
D.
, and
Li
,
Q.
, “
A model reduction method for parametric dynamical systems defined on complex geometries
,”
J. Comput. Phys.
506
,
112923
(
2024
).
110.
Stankiewicz
,
W.
, “
Recursive Dynamic Mode Decomposition for the flow around two square cylinders in tandem configuration
,”
J. Fluids Struct.
110
,
103515
(
2022
).
111.
Taira
,
K.
,
Brunton
,
S. L.
,
Dawson
,
S. T. M.
,
Rowley
,
C. W.
,
Colonius
,
T.
,
McKeon
,
B. J.
,
Schmidt
,
O. T.
,
Gordeyev
,
S.
,
Theofilis
,
V.
, and
Ukeiley
,
L. S.
, “
Modal analysis of fluid flows: An overview
,”
AIAA J.
55
,
4013
4041
(
2017
).
112.
Tu
,
J. H.
,
Rowley
,
C. W.
,
Luchtenburg
,
D. M.
,
Brunton
,
S. L.
, and
Kutz
,
J. N.
, “
On dynamic mode decomposition: Theory and applications
,”
J. Comput. Dyn.
1
,
391
421
(
2014
).
113.
Unal
,
M. F.
and
Rockwell
,
D.
, “
On vortex formation from a cylinder. Part 1. The initial instability
,”
J. Fluid Mech.
190
,
491
512
(
1988
).
114.
Wahba
,
N.
,
Rismanchi
,
B.
,
Pu
,
Y.
, and
Aye
,
L.
, “
Efficient HVAC system identification using Koopman operator and machine learning for thermal comfort optimisation
,”
Build. Environ.
242
,
110567
(
2023
).
115.
Wang
,
J.
,
Xu
,
B.
,
Lai
,
J.
,
Wang
,
Y.
,
Hu
,
C.
,
Li
,
H.
, and
Song
,
A.
, “
An improved Koopman-MPC framework for data-driven modeling and control of soft actuators
,”
IEEE Rob. Autom. Lett.
8
,
616
623
(
2023
).
116.
Wang
,
M.
,
Lou
,
X.
,
Wu
,
W.
, and
Cui
,
B.
, “
Koopman-based MPC with learned dynamics: Hierarchical neural network approach
,”
IEEE Trans. Neural Networks Learn. Syst.
35
,
3630
3639
(
2024
).
117.
Williams
,
M. O.
,
Kevrekidis
,
I. G.
, and
Rowley
,
C. W.
, “
A data–driven approximation of the Koopman operator: Extending dynamic mode decomposition
,”
J. Nonlinear Sci.
25
,
1307
1346
(
2015
).
118.
Wu
,
J.
,
Sheridan
,
J.
,
Hourigan
,
K.
, and
Soria
,
J.
, “
Shear layer vortices and longitudinal vortices in the near wake of a circular cylinder
,”
Exp. Therm. Fluid Sci.
12
,
169
174
(
1996
).
119.
Wu
,
W.
,
Meneveau
,
C.
, and
Mittal
,
R.
, “
Spatio-temporal dynamics of turbulent separation bubbles
,”
J. Fluid Mech.
883
,
A45
(
2020
).
120.
Wu
,
Z.
,
Laurence
,
D.
,
Utyuzhnikov
,
S.
, and
Afgan
,
I.
, “
Proper orthogonal decomposition and dynamic mode decomposition of jet in channel crossflow
,”
Nucl. Eng. Des.
344
,
54
68
(
2019
).
121.
Yeomans
,
J. M.
, “
Fluid flows on many scales
,”
Nat. Phys.
17
,
756
(
2021
).
122.
Zhang
,
H.
,
Xin
,
D.
, and
Ou
,
J.
, “
Wake control using spanwise-varying vortex generators on bridge decks: A computational study
,”
J. Wind Eng. Ind. Aerodyn.
184
,
185
197
(
2019
).
123.
Zhang
,
Q.
,
Liu
,
Y.
, and
Wang
,
S.
, “
The identification of coherent structures using proper orthogonal decomposition and dynamic mode decomposition
,”
J. Fluids Struct.
49
,
53
72
(
2014
).
124.
Zhang
,
X.
,
Weerasuriya
,
A. U.
,
Wang
,
J.
,
Li
,
C. Y.
,
Chen
,
Z.
,
Tse
,
K. T.
, and
Hang
,
J.
, “
Cross-ventilation of a generic building with various configurations of external and internal openings
,”
Build. Environ.
207
,
108447
(
2022
).
125.
Zhang
,
X.
,
Weerasuriya
,
A. U.
,
Zhang
,
X.
,
Tse
,
K. T.
,
Lu
,
B.
,
Li
,
C. Y.
, and
Liu
,
C.-H.
, “
Pedestrian wind comfort near a super-tall building with various configurations in an urban-like setting
,”
Build. Simul.
13
,
1385
1408
(
2020
).
126.
Zhao
,
J.
,
Leontini
,
J. S.
,
Lo Jacono
,
D.
, and
Sheridan
,
J.
, “
Fluid-structure interaction of a square cylinder at different angles of attack
,”
J. Fluid Mech.
747
,
688
721
(
2014
).
127.
Zhao
,
M.
and
Jiang
,
L.
, “
Data-driven probability density forecast for stochastic dynamical systems
,”
J. Comput. Phys.
492
,
112422
(
2023
).
128.
Zhou
,
L.
,
Tse
,
K. T.
,
Hu
,
G.
, and
Li
,
C. Y.
, “
Mode interpretation of interference effects between tall buildings in tandem and side-by-side arrangement with POD and ICA
,”
Eng. Struct.
243
,
112616
(
2021a
).
129.
Zhou
,
L.
,
Tse
,
K. T.
,
Hu
,
G.
, and
Li
,
Y.
, “
Higher order dynamic mode decomposition of wind pressures on square buildings
,”
J. Wind Eng. Ind. Aerodyn.
211
,
104545
(
2021b
).
You do not currently have access to this content.