The design of integrated circuits presents an increasing challenge for engineers, who seek to identify effective methods for cooling the miniature electronic components that are becoming increasingly complex. One potential solution is the use of micro pin-fin heat sinks, which have the potential to be an effective thermal management technique. This study compares the potential thermo-hydraulic efficiency of micro heat exchangers with conical pin-fins, arranged in two alternative patterns. The flow topology was investigated using the critical points theory and Ω-criteria to gain a deeper understanding of vortical structures and flow separation. 75 variations of pin-fin arrays were simulated and analyzed. It is noteworthy that no pattern similar to bidirectional pin-fins has been studied previously. The input datasets for the simulations included pitch/height ratios ranging from 0.823 to 1.235, cone angles from 0° to 13.48°, and flow Reynolds numbers of 40–117. The numerical results show that Ω and kinetic energies can predict the onset of instabilities. The degree of conicity and the pattern affect the friction factor, typically reducing it. The conical shape and arrangement of pin-fins can also aid in stabilizing the flow. Furthermore, the dependence of the friction factor on pitch/height and Reynolds was quantified with the calculated mean relative error of 1.7%. Moreover, turbulence parameters and friction factors were used to evaluate the thermohydraulic properties, deliberately excluding heat transfer simulations. This approach allows a much wider range of geometric modifications to be investigated for the preliminary optimization of the thermal and hydraulic performance of microchannels.

1.
S. S.
Mousavi Ajarostaghi
,
M.
Zaboli
,
H.
Javadi
,
B.
Badenes
, and
J. F.
Urchueguia
, “
A review of recent passive heat transfer enhancement methods
,”
Energies
15
,
986
(
2022
).
2.
J.
Mathew
and
S.
Krishnan
, “
A review on transient thermal management of electronic devices
,”
J. Electron. Packag.
144
(
1
),
010801
(
2022
).
3.
A.
Moradikazerouni
, “
Heat transfer characteristics of thermal energy storage system using single and multi-phase cooled heat sinks: A review
,”
J. Energy Storage
49
,
104097
(
2022
).
4.
H. M.
Ali
,
M. J.
Ashraf
,
A.
Giovannelli
,
M.
Irfan
,
T. B.
Irshad
,
H. M.
Hamid
,
F.
Hassan
, and
A.
Arshad
, “
Thermal management of electronics: An experimental analysis of triangular, rectangular and circular pin-fin heat sinks for various PCMs
,”
Int. J. Heat Mass Transfer
123
,
272
(
2018
).
5.
C.
Liang
,
Y.
Rao
,
J.
Luo
, and
X.
Luo
, “
Experimental and numerical study of turbulent flow and heat transfer in a wedge-shaped channel with guiding pin fins for turbine blade trailing edge cooling
,”
Int. J. Heat Mass Transfer
178
,
121590
(
2021
).
6.
H.
Kishore
,
M.
Pal
,
C. K.
Nirala
, and
A.
Agrawal
, “
Thermal performance evaluation of micro pin–fin heat exchangers: Part II—Numerical simulation and fabrication demonstration
,”
Int. J. Precis. Eng. Manuf.
25
,
255
269
(
2024
).
7.
P.
Bhandari
,
K. S.
Rawat
,
Y. K.
Prajapati
,
D.
Padalia
,
L.
Ranakoti
, and
T.
Singh
, “
Design modifications in micro pin fin configuration of microchannel heat sink for single phase liquid flow: A review
,”
J. Energy Storage
66
,
107548
(
2023
).
8.
A.
Ravanji
,
A.
Lee
,
J.
Mohammadpour
, and
S.
Cheng
, “
Critical review on thermohydraulic performance enhancement in channel flows: A comparative study of pin fins
,”
Renewable Sustainable Energy Rev.
188
,
113793
(
2023
).
9.
J.
Gao
,
Z.
Hu
,
Q.
Yang
,
X.
Liang
, and
H.
Wu
, “
Fluid flow and heat transfer in microchannel heat sinks: Modelling review and recent progress
,”
Therm. Sci. Eng. Prog.
29
,
101203
(
2022
).
10.
Y.
Alihosseini
,
M. Z.
Targhi
,
M. M.
Heyhat
, and
N.
Ghorbani
, “
Effect of a micro heat sink geometric design on thermo-hydraulic performance: A review
,”
Appl. Therm. Eng.
170
,
114974
(
2020
).
11.
T.
Ambreen
,
A.
Saleem
, and
C. W.
Park
, “
Pin-fin shape-dependent heat transfer and fluid flow characteristics of water-and nanofluid-cooled micropin-fin heat sinks: Square, circular and triangular fin cross-sections
,”
Appl. Therm. Eng.
158
,
113781
(
2019
).
12.
A. M. E.
Arefin
, “
Thermal analysis of modified pin fin heat sink for natural convection
,” in
Proceedings of the 5th International Conference on Informatics, Electronics and Vision (ICIEV)
(
IEEE
,
2016
).
13.
A.
Karki
and
S. P.
Adhikari
, “
Cooling performance of a single-phase truncated cone shaped fins array in a microchannel heat sink: A numerical analysis
,” in
Proceedings of the 10th IOE Graduate Conference
(
2021
).
14.
P.
Narato
,
M.
Wae-hayee
,
N.
Kaewchoothong
, and
C.
Nuntadusit
, “
Heat transfer enhancement and flow characteristics in a rectangular channel having inclined pin arrays mounted on the endwall surface
,”
Int. Commun. Heat Mass Transfer
122
,
105162
(
2021
).
15.
L.
Luo
,
H.
Yan
,
W.
Du
,
W.
Su
,
S.
Wang
, and
D.
Huang
, “
Numerical study of a novel curved pin fin for heat transfer enhancement within aeroengine turbine blade
,”
Aerosp. Sci. Technol.
123
,
107436
(
2022
).
16.
V. M.
Kumar
,
B. N.
Rao
, and
S.
Farooq
, “
Thermal analysis of rectangular and tapered pin fins heat sink using icepak
,” in
Proceedings of the International Conference on Allied Technologies in Electrical and Communication Systems
,
2016
, Vol.
7
.
17.
I.
Khan
,
M.
Baruah
,
A.
Dewan
, and
P.
Mahanta
, “
Computational investigation of energy efficient pin fin cross section for a compact heat exchanger
,”
Int. Energy J.
10
(
4
),
233
246
(
2009
).
18.
P.
Naphon
and
A.
Sookkasem
, “
Investigation on heat transfer characteristics of tapered cylinder pin fin heat sinks
,”
Energy Convers. Manage.
48
,
2671
(
2007
).
19.
B.
Pati
,
B.
Sharma
,
A.
Palo
, and
R. N.
Barman
, “
Numerical investigation of pin-fin thermal performance for staggered and inline arrays at low Reynolds number
,”
Int. J. Heat Technol.
36
,
697
(
2018
).
20.
J.
Issa
,
N.
Saliba
, and
A.
El Cheikh
, “A
numerical study of heat transfer and fluid flow in a channel with an array of pin fins in aligned and staggered configurations
,” in
Proceedings of the 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)
(
IEEE
,
2018
), pp.
513
520
.
21.
M.
Abuşka
and
V.
Çorumlu
, “
A comparative experimental thermal performance analysis of conical pin fin heat sink with staggered and modified staggered layout under forced convection
,”
Therm. Sci. Eng. Prog.
37
,
101560
(
2023
).
22.
C. H.
Huang
and
Y. T.
Wu
, “
An optimum design for a natural convection pin fin array with orientation consideration
,”
Appl. Therm. Eng.
188
,
116633
(
2021
).
23.
K. R.
Sreenivasan
, “
Turbulent mixing: A perspective
,”
Proc. Natl. Acad. Sci. U. S. A.
116
(
37
),
18175
18193
(
2019
).
24.
J.
Schumacher
,
J. D.
Scheel
,
D.
Krasnov
,
D. A.
Donzis
,
V.
Yakhot
, and
K. R.
Sreenivasan
, “
Small-scale universality in fluid turbulence
,”
Proc. Natl. Acad. Sci. U. S. A.
111
(
30
),
10961
10965
(
2014
).
25.
E.
Toubiana
,
R.
Gautier
,
D.
Bougeard
, and
S.
Russeil
, “
Large Eddy Simulation of transitional flows in an elliptical finned-tube heat exchanger
,”
Int. J. Therm. Sci.
144
,
158
(
2019
).
26.
F.
Xu
,
Z.
Pan
, and
H.
Wu
, “
Experimental investigation on the flow transition in different pin-fin arranged microchannels
,”
Microfluid. Nanofluid.
22
(
1
),
11
(
2018
).
27.
A.
Koşar
,
C.
Mishra
, and
Y.
Peles
, “
Laminar flow across a bank of low aspect ratio micro pin fins
,”
J. Fluids Eng.
127
,
419
(
2005
).
28.
C.
Liu
,
Y.
Wang
,
Y.
Yang
, and
Z.
Duan
, “
New omega vortex identification method
,”
Sci. China Phys. Mech.
59
,
684711
(
2016
).
29.
A. E.
Perry
and
B. D.
Fairlie
, “
Critical points in flow patterns
,”
Adv. Geophys.
18
,
299
(
1975
).
30.
M.
Tobak
and
D. J.
Peake
, “
Topology of three-dimensional separated flows
,”
Annu. Rev. Fluid Mech.
14
,
61
(
1982
).
31.
M. Y.
Younis
,
H.
Zhang
,
B.
Hu
,
Z.
Muhammad
, and
S.
Mehmood
, “
Investigation of different aspects of laminar horseshoe vortex system using PIV
,”
J. Mech. Sci. Technol.
28
,
527
(
2014
).
32.
M. B.
Saito
and
M. J. S.
De Lemos
, “
A correlation for interfacial heat transfer coefficient for turbulent flow over an array of square rods
,”
J. Heat Transfer
128
,
444
452
(
2006
).
33.
K. M.
Their
,
T. H.
Abed
,
K.
Azeez
, and
M. A.
Mohsin
, “
Thermohydraulic performance study of the effect of winglet inserts and a corrugated wall in a rectangular channel
,”
Case Stud. Therm. Eng.
52
,
103707
(
2023
).
34.
A.
Renfer
,
M. K.
Tiwari
,
T.
Brunschwiler
,
B.
Michel
, and
D.
Poulikakos
, “
Experimental investigation into vortex structure and pressure drop across microcavities in 3D integrated electronics
,”
Exp. Fluids
51
,
731
(
2011
).
You do not currently have access to this content.