A bounded porous box saturated with Newtonian fluid and subjected to a sinusoidal temperature gradient has various practical applications, such as solar energy storage, groundwater remediation, food processing, and chemical reactors. We address the generalization of the classical Rayleigh–Bénard convection problem in a horizontal fluid layer in an infinitely large domain heated from below to a finite three-dimensional box. We also look into a more intricate form of the modulated Rayleigh–Bénard problem in which the temperature at the bottom boundary varies sinusoidally. The Rayleigh number quantifies the non-sinusoidal part of the temperature gradient, while the amplitude and frequency of modulation describe the sinusoidal one. The critical Rayleigh number is determined using linear and nonlinear stability analyses; for the latter, the energy method is used. There is a possibility of subcritical instabilities, as evidenced by the energy stability estimates being lower than the linear ones. Furthermore, eigenvalues are obtained as a function of aspect ratios, modulation amplitude, and frequency for varying Darcy numbers. Modulation amplitude more significantly triggers a change in flow patterns at the onset of convection compared to the effect of other parameters. Considering water-saturated porous media made up of different materials, we report the critical temperature difference between lower and upper surfaces required for the onset of convection. In addition, a comparison between such a temperature difference obtained from linear theory and the energy method is also provided in the same manner. It is observed that subharmonic instability occurs for all considered porous media packed densely or sparsely.

1.
D. A.
Nield
and
A.
Bejan
,
Convection in Porous Media
, Vol.
3
(
Springer
,
New York
,
2006
), Vol. 3.
2.
K.
Vafai
,
Handbook of Porous Media
(
CRC Press
,
Boca Raton, FL
,
2015
).
3.
C. W.
Horton
and
F. T.
Rogers
, “
Convection currents in a porous medium
,”
J. Appl. Phys.
16
,
367
370
(
1945
).
4.
E. R.
Lapwood
, “
Convection of a fluid in a porous medium
,”
Math. Proc. Cambridge Philos. Soc.
44
,
508
521
(
1948
).
5.
K.
Vafai
and
C. L.
Tien
, “
Boundary and inertia effects on flow and heat transfer in porous media
,”
Int. J. Heat Mass Transfer
24
,
195
203
(
1981
).
6.
D. A. S.
Rees
, “
The onset of Darcy-Brinkman convection in a porous layer: An asymptotic analysis
,”
Int. J. Heat Mass Transfer
45
,
2213
2220
(
2002
).
7.
R. J.
Donnelly
, “
Experiments on the stability of viscous flow between rotating cylinder. III. Enhancement of stability by modulation
,”
Proc. R. Soc. London, Ser. A: Math. Phys. Sci.
281
,
130
139
(
1964
).
8.
G.
Venezian
, “
Effect of modulation on the onset of thermal convection
,”
J. Fluid Mech.
35
,
243
254
(
1969
).
9.
S.
Rosenblat
and
G. A.
Tanaka
, “
Modulation of thermal convection instability
,”
Phys. Fluids
14
,
1319
1322
(
1971
).
10.
M. S.
Malashetty
and
D.
Basavaraja
, “
Rayleigh-Bénard convection subject to time dependent wall temperature/gravity in a fluid-saturated anisotropic porous medium
,”
Heat Mass Transfer
38
,
551
563
(
2002
).
11.
P. G.
Siddheshwar
,
B. S.
Bhadauria
, and
A.
Srivastava
, “
An analytical study of nonlinear double-diffusive convection in a porous medium under temperature/gravity modulation
,”
Transp. Porous Media
91
,
585
604
(
2012
).
12.
O. P.
Suthar
,
P. G.
Siddheshwar
, and
B. S.
Bhadauria
, “
A study on the onset of thermally modulated Darcy-Bénard convection
,”
J. Eng. Math.
101
,
175
188
(
2016
).
13.
N.
Rudraiah
and
M. S.
Malashetty
, “
Effect of modulation on the onset of convection in a sparsely packed porous layer
,”
ASME J. Heat Transfer
112
,
685
689
(
1990
).
14.
B. S.
Bhadauria
,
P. G.
Siddheshwar
, and
O. P.
Suthar
, “
Nonlinear thermal instability in a rotating viscous fluid layer under temperature/gravity modulation
,”
ASME J. Heat Transfer
134
,
102502
(
2012
).
15.
S.
Hazra
,
K.
Kumar
, and
S.
Mitra
, “
Rayleigh-Bénard magnetoconvection with temperature modulation
,”
Proc. Math. Phys. Eng. Sci.
476
,
20200289
(
2020
).
16.
A.
Bansal
and
O. P.
Suthar
, “
A study on the effect of temperature modulation on Darcy-Bénard convection using a local thermal non-equilibrium model
,”
Phys. Fluids
34
,
044107
(
2022
).
17.
A. C.
Baytas
and
I.
Pop
, “
Free convection in oblique enclosures filled with a porous medium
,”
Int. J. Heat Mass Transfer
42
,
1047
1057
(
1999
).
18.
T.
Basak
,
S.
Roy
,
T.
Paul
, and
I.
Pop
, “
Natural convection in a square cavity filled with a porous medium: Effects of various thermal boundary conditions
,”
Int. J. Heat Mass Transfer
49
,
1430
1441
(
2006
).
19.
J. L.
Beck
, “
Convection in a box of porous material saturated with fluid
,”
Phys. Fluids
15
,
1377
1383
(
1972
).
20.
V.
Prasad
and
F. A.
Kulacki
, “
Convective heat transfer in a rectangular porous cavity—Effect of aspect ratio on flow structure and heat transfer
,”
ASME J. Heat Transfer
106
,
158
165
(
1984
).
21.
D. W.
Stamps
,
V. S.
Arpaci
, and
J. A.
Clark
, “
Unsteady three-dimensional natural convection in a fluid-saturated porous medium
,”
J. Fluid Mech.
213
,
377
396
(
1990
).
22.
T.
Nilsen
and
L.
Storesletten
, “
An analytical study on natural convection in isotropic and anisotropic porous channels
,”
ASME J. Heat Transfer
112
,
396
401
(
1990
).
23.
P. A.
Tyvand
, “
Onset of Rayleigh-Bénard convection in porous bodies
,” in
Transport Phenomena in Porous Media. II
(
Elsevier
,
2002
), pp.
82
112
.
24.
I.
Sezai
, “
Flow patterns in a fluid-saturated porous cube heated from below
,”
J. Fluid Mech.
523
,
393
410
(
2005
).
25.
G.
Ahlers
,
S.
Grossmann
, and
D.
Lohse
, “
Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection
,”
Rev. Mod. Phys.
81
,
503
537
(
2009
).
26.
A.
Barletta
and
L.
Storesletten
, “
A three-dimensional study of the onset of convection in a horizontal, rectangular porous channel heated from below
,”
Int. J. Therm. Sci.
55
,
1
15
(
2012
).
27.
R. J. A. M.
Stevens
,
D.
Lohse
, and
R.
Verzicco
, “
Sidewall effects in Rayleigh-Bénard convection
,”
J. Fluid Mech.
741
,
1
27
(
2014
).
28.
G. M.
Homsy
, “
Global stability of time-dependent flows. Part 2. Modulated fluid layers
,”
J. Fluid Mech.
62
,
387
403
(
1974
).
29.
S.
Carmi
, “
Energy stability of modulated flows
,”
Phys. Fluids
17
,
1951
1955
(
1974
).
30.
S. H.
Davis
, “
The stability of time-periodic flows
,”
Annu. Rev. Fluid Mech.
8
,
57
74
(
1976
).
31.
P. J.
Riley
and
R. L.
Laurence
, “
Energy stability of modulated circular Couette flow
,”
J. Fluid Mech.
79
,
535
552
(
1977
).
32.
R. C.
Shulze
and
S.
Carmi
, “
Energy stability of thermally modulated Poiseuille flow
,”
Z. Angew. Math. Phys.
34
,
583
595
(
1983
).
33.
J.
Singh
,
E.
Hines
, and
D.
Iliescu
, “
Global stability results for temperature modulated convection in ferrofluids
,”
Appl. Math. Comput.
219
,
6204
6211
(
2013
).
34.
A.
Kumar
,
V. R. K.
Raju
, and
S.
Das
, “
Onset of Rayleigh-Bénard convection with periodic boundary temperatures using weakly nonlinear theory
,”
Microgravity Sci. Technol.
32
,
1237
1243
(
2020
).
35.
S.
Saravanan
and
M.
Meenasaranya
, “
Energy stability of modulation driven porous convection with magnetic field
,”
Meccanica
56
,
2777
2788
(
2021
).
36.
M.
Arora
and
R.
Bajaj
, “
Energy stability of thermally modulated inclined fluid layer
,”
Fluid Dyn. Res.
54
,
045503
(
2022
).
37.
S.
Chandrasekhar
,
Hydrodynamic and Hydromagnetic Stability
(
Dover Publications
,
2013
).
38.
M.
Farkas
,
Periodic Motions
(
Springer Science & Business Media
,
New York
,
2013
), Vol.
104
.
39.
P. G.
Siddheshwar
and
B. N.
Veena
, “
A theoretical study of natural convection of water-based nanoliquids in low-porosity enclosures using single-phase model
,”
J. Nanofluids
7
,
163
174
(
2018
).
40.
P. G.
Siddheshwar
and
K. M.
Lakshmi
, “
Unsteady finite amplitude convection of water-copper nanoliquid in high-porosity enclosures
,”
ASME J. Heat Transfer
141
,
062405
(
2019
).
41.
J.
Guo
and
P. N.
Kaloni
, “
Double-diffusive convection in a porous medium, nonlinear stability, and the Brinkman effect
,”
Stud. Appl. Math.
94
,
341
358
(
1995
).
42.
J.
Singh
and
R.
Bajaj
, “
Temperature modulation in Rayleigh-Bénard convection
,”
ANZIAM J.
50
,
231
245
(
2008
).
43.
B.
Chhuon
and
J. P.
Caltagirone
, “
Stability of a horizontal porous layer with timewise periodic boundary conditions
,”
J. Heat Transfer
101
,
244
248
(
1979
).
44.
J.
Serrin
, “
On the stability of viscous fluid motions
,”
Arch. Rational Mech. Anal.
3
,
1
13
(
1959
).
45.
D. D.
Joseph
and
C. C.
Shir
, “
Subcritical convective instability. Part 1. Fluid layers
,”
J. Fluid Mech.
26
,
753
768
(
1966
).
46.
A.
Georgescu
and
L.
Palese
,
Stability Criteria for Fluid Flows
, Series on Advances in Mathematics for Applied Sciences Vol.
81
(
World Scientific
,
Singapore
,
2010
).
47.
B.
Straughan
,
The Energy Method, Stability, and Nonlinear Convection
, Applied Mathematical Sciences Vol.
91
(
Springer Science & Business Media
,
New York
,
2013
).
48.
S. H.
Davis
and
C.
Von Kerczek
, “
A reformulation of energy stability theory
,”
Arch. Rational Mech. Anal.
52
,
112
117
(
1973
).
49.
D. D.
Joseph
, “
Nonlinear stability of the Boussinesq equations by the method of energy
,”
Arch. Rational Mech. Anal.
22
,
163
184
(
1966
).
50.
A.
Riaz
,
M.
Hesse
,
H. A.
Tchelepi
, and
F. M.
Orr
, “
Onset of convection in a gravitationally unstable diffusive boundary layer in porous media
,”
J. Fluid Mech.
548
,
87
111
(
2006
).
51.
H.
Hassanzadeh
,
M.
Pooladi-Darvish
, and
D.
Keith
, “
Stability of a fluid in a horizontal saturated porous layer: Effect of non-linear concentration profile, initial, and boundary conditions
,”
Transp. Porous Media
65
,
193
211
(
2006
).
52.
S. M. J.
Raad
,
H.
Emami-Meybodi
, and
H.
Hassanzadeh
, “
Impact of boundary excitation on stability of a diffusive boundary layer in porous media
,”
Adv. Water Resour.
126
,
40
54
(
2019
).
You do not currently have access to this content.