We analyze the dynamics of small two-dimensional disturbances in stable plane-parallel inviscid shear flows under linear theory. Using a velocity profile Vx=U(y) with an inflection point but stable according to Fjørtoft's theorem, we illustrate that the continuum spectrum of van Kampen modes, possessing real phase velocities c=ω/k, aggregates into Landau damping solutions or “quasi-modes,” which exhibit exponential decay. It was found that the real part of the complex phase velocity cL(k) of these solutions may lie outside the allowable range for van Kampen modes, suggesting a non-resonant damping mechanism for these quasi-modes. This conclusion was reached by solving the eigenvalue problem and observing the evolution of initial perturbations, calculated by directly solving the evolutionary equation for vorticity as well as by decomposing the initial disturbance into van Kampen modes. Landau damping of the total vorticity across the channel emerges as an intermediate stage before transitioning to power-law damping.

1.
Akhiezer
,
A. I.
,
Akhiezer
,
I. A.
,
Polovin
,
R. V.
,
Sitenko
,
A. G.
, and
Stepanov
,
K. N.
,
Plasma Electrodynamics
(
Pergamon Press
,
Oxford
,
1975
), Vol.
1
.
2.
Andronov
,
A. A.
and
Fabrikant
,
A. L.
, “
Landau damping, wind waves and whistles
,” in
Nonlinear Waves
, edited by
A. N.
Gaponov-Grekhov
(
Nauka
,
Moscow
,
1979
), pp.
68
104
(in Russian).
3.
Balmforth
,
N. J.
and
Morrison
,
P. J.
, “
Singular eigenfunctions for shearing fluids I
,”
Technical Report No. DOE/ET/53088-692
(
Institute for Fusion Studies
,
Austin
,
Texas
,
1995
).
4.
Barré
,
J.
,
Olivetti
,
A.
, and
Yamaguchi
,
Y. Y.
, “
Algebraic damping in the one-dimensional Vlasov equation
,”
J. Phys. A
44
,
405502
(
2011
).
5.
Case
,
K. M.
, “
Plasma oscillations
,”
Ann. Phys.
7
,
349
364
(
1959
).
6.
Case
,
K. M.
, “
Stability of inviscid plane Couette flow
,”
Phys. Fluids
3
,
143
148
(
1960
).
7.
Drazin
,
P. G.
and
Reid
,
W. H.
,
Hydrodynamic Stability
(
Cambridge University Press
,
1981
).
8.
Fjørtoft
,
R.
, “
Application of integral theorems in deriving criteria of stability for the baroclinic circular vortex
,”
Geophys. Publ.
17
,
1
52
(
1950
).
9.
Howard
,
L. N.
, “
Note on a paper of John W. Miles
,”
J. Fluid Mech.
10
,
509
512
(
1961
).
10.
Kurosh
,
A. G.
,
Higher Algebra
(
MIR
,
Moscow
,
1972
) (translated from Russian).
11.
Landau
,
L. D.
, “
On the vibrations of the electronic plasma
,”
J. Phys. USSR
10
,
25
34
(
1946
).
12.
Lin
,
C. C.
,
The Theory of Hydrodynamical Stability
(
Cambridge University Press
,
1955
).
13.
Ng
,
C. S.
and
Bhattacharjee
,
A.
, “
Landau modes are eigenmodes of stellar systems in the limit of zero collisions
,”
Astrophys. J.
923
,
271
(
2021
).
14.
Ng
,
C. S.
,
Bhattacharjee
,
A.
, and
Skiff
,
F.
, “
Kinetic eigenmodes and discrete spectrum of plasma oscillations in a weakly collisional plasma
,”
Phys. Rev. Lett.
83
,
1974
1977
(
1999
).
15.
Ng
,
C. S.
,
Bhattacharjee
,
A.
, and
Skiff
,
F.
, “
Complete spectrum of kinetic eigenmodes for plasma oscillations in a weakly collisional plasma
,”
Phys. Rev. Lett.
92
,
065002
(
2004
).
16.
Polyachenko
,
E. V.
, “
Outline of the unified theory of spiral and bar-like structures in galaxies
,”
Mon. Not. R. Astron. Soc.
348
,
345
354
(
2004
).
17.
Polyachenko
,
E. V.
, “
The eigenvalue problem for integrable gravitating systems with application to galactic discs
,”
Mon. Not. R. Astron. Soc.
357
,
559
564
(
2005
).
18.
Polyachenko
,
E. V.
and
Shukhman
,
I. G.
, “
Damped perturbations in inviscid shear flows: van Kampen modes and Landau damping
,”
Phys. Fluids
34
,
064108
(
2022
).
19.
Polyachenko
,
E. V.
,
Shukhman
,
I. G.
, and
Borodina
,
O. I.
, “
Damped perturbations in stellar systems: Genuine modes and Landau-damped waves
,”
Mon. Not. R. Astron. Soc.
503
,
660
668
(
2021
).
20.
Rayleigh
,
L.
, “
On the stability, or instability, of certain fluid motions
,”
Proc. London Math. Soc.
s1-11
,
57
72
(
1879
).
21.
Schmid
,
P.
and
Henningson
,
D.
,
Stability and Transition in Shear Flows
, Applied Mathematical Sciences (
Springer New York
,
2012
).
22.
van Kampen
,
N. G.
, “
On the theory of stationary waves in plasmas
,”
Physica
21
,
949
963
(
1955
).
23.
Vlasov
,
A. A.
, “
On the kinetic theory of an assembly of particles with collective interaction
,”
J. Phys. USSR
9
,
25
40
(
1945
).
You do not currently have access to this content.