Rotationally symmetric bodies with longitudinal cross sections of parabolic shape are frequently used to model astrophysical objects, such as magnetospheres and other blunt objects, immersed in interplanetary or interstellar gas or plasma flows. We discuss a simple formula for the potential flow of an incompressible fluid around an elliptic paraboloid whose axis of symmetry coincides with the direction of incoming flow. Prescribing this flow, we derive an exact analytical solution to the induction equation of ideal magnetohydrodynamics for the case of an initially homogeneous magnetic field of arbitrary orientation being passively advected in this flow. Our solution procedure employs Euler potentials and Cauchy's integral formalism based on the flow's stream function and isochrones. Furthermore, we use a particular renormalization procedure that allows us to generate more general analytical expressions modeling the deformations experienced by arbitrary scalar or vector-valued fields embedded in the flow as they are advected first toward and then past the parabolic obstacle. Finally, both the velocity field and the magnetic field embedded therein are generalized from incompressible to mildly compressible flow, where the associated density distribution is found from Bernoulli's principle.

1.
Aschwanden
,
M. J.
, “
Global energetics of solar flares. IX. Refined magnetic modeling
,”
Astrophys. J.
885
,
49
(
2019
).
2.
Batchelor
,
G. K.
,
An Introduction to Fluid Dynamics
, Cambridge Mathematical Library (
Cambridge University Press
,
2000
).
3.
Cauchy
,
A.-L.
,
Théorie de la Propagation des Ondes à la Surface d'un Fluide Pesant d'une Profondeur Indéfinie
(
Académie Royale des Sciences
,
1816
).
4.
Combi
,
M. R.
,
Gombosi
,
T. I.
, and
Kabin
,
K.
, “
Plasma flow past cometary and planetary satellite atmospheres
,”
Geophys. Monogr. Ser.
130
,
151
(
2002
).
5.
Davis
,
R. T.
and
Werle
,
M. J.
, “
Numerical solutions for laminar incompressible flow past a paraboloid of revolution
,”
AIAA J.
10
,
1224
(
1972
).
6.
Dursi
,
L. J.
and
Pfrommer
,
C.
, “
Draping of cluster magnetic fields over bullets and bubbles—Morphology and dynamic effects
,”
Astrophys. J.
677
,
993
(
2008
).
7.
Florinski
,
V.
,
Guzman
,
J. A.
,
Kleimann
,
J.
et al, “
Magnetic trapping of galactic cosmic rays in the outer heliosheath and their preferential entry into the heliosphere
,”
Astrophys. J.
961
,
244
(
2024
).
8.
Gold
,
T.
and
Hoyle
,
F.
, “
On the origin of solar flares
,”
Mon. Not. R. Astron. Soc.
120
,
89
(
1960
).
9.
Ikeuchi
,
S.
and
Tomisaka
,
K.
, “
Interaction of intergalactic-gas flow with a rigid-body, spheroidal galaxy
,”
Astrophys. Space Sci.
80
,
483
(
1981
).
10.
Isenberg
,
P. A.
,
Forbes
,
T. G.
, and
Möbius
,
E.
, “
Draping of the interstellar magnetic field over the heliopause: A passive field model
,”
Astrophys. J.
805
,
153
(
2015
).
11.
Kleimann
,
J.
,
Dialynas
,
K.
,
Fraternale
,
F.
et al, “
The structure of the large-scale heliosphere as seen by current models
,”
Space Sci. Rev.
218
,
36
(
2022
).
12.
Kleimann
,
J.
and
Hornig
,
G.
, “
Non-ideal MHD properties of magnetic flux tubes in the solar photosphere
,”
Sol. Phys.
200
,
47
(
2001
).
13.
Kleimann
,
J.
,
Röken
,
C.
,
Fichtner
,
H.
, and
Heerikhuisen
,
J.
, “
Toward more realistic analytic models of the heliotail: Incorporating magnetic flattening via distortion flows
,”
Astrophys. J.
816
,
29
(
2016
).
14.
Kleimann
,
J.
,
Röken
,
C.
, and
Fichtner
,
H.
, “
An improved analytical model of the local interstellar magnetic field: The extension to compressibility
,”
Astrophys. J.
838
,
75
(
2017
).
15.
Kobel
,
E.
and
Flückiger
,
E. O.
, “
A model of the steady state magnetic field in the magnetosheath
,”
J. Geophys. Res.
99
,
23617
, https://doi.org/10.1029/94JA01778 (
1994
).
16.
Kotova
,
G.
,
Verigin
,
M.
,
Gomboshi
,
T.
, and
Kabin
,
K.
, “
Analytical model of the planetary bow shock for various magnetic field directions based on MHD calculations
,”
Sol.-Terr. Phys.
6
,
44
(
2020
).
17.
Lazar
,
M.
,
Scherer
,
K.
,
Fichtner
,
H.
, and
Pierrard
,
V.
, “
Toward a realistic macroscopic parametrization of space plasmas with regularized κ-distributions
,”
Astron. Astrophys.
634
,
A20
(
2020
).
18.
Merten
,
L.
,
Bustard
,
C.
,
Zweibel
,
E. G.
, and
Becker Tjus
,
J.
, “
The propagation of cosmic rays from the galactic wind termination shock: Back to the galaxy?
,”
Astrophys. J.
859
,
63
(
2018
).
19.
Meyer-Vernet
,
N.
,
Moncuquet
,
M.
, and
Hoang
,
S.
, “
Temperature inversion in the Io plasma torus
,”
Icarus
116
,
202
(
1995
).
20.
Miller
,
D. R.
, “
The boundary layer on a paraboloid of revolution
,”
Math. Proc. Cambridge Philos. Soc.
65
,
285
(
1969
).
21.
Miller
,
D. R.
, “
The downstream solution for steady viscous flow past a paraboloid
,”
Math. Proc. Cambridge Philos. Soc.
70
,
123
(
1971
).
22.
Milne-Thomson
,
L. M.
,
Theoretical Hydrodynamics
, 5th ed. (
MacMillan Press Ltd.
,
London
,
1968
).
23.
Müller
,
A.
,
Ignesti
,
A.
,
Poggianti
,
B.
et al, “
Role of magnetic fields in ram pressure stripped galaxies
,”
Galaxies
9
,
116
(
2021
).
24.
Nabert
,
C.
,
Glassmeier
,
K. H.
, and
Plaschke
,
F.
, “
A new method for solving the MHD equations in the magnetosheath
,”
Ann. Geophys.
31
,
419
(
2013
).
25.
Petrinec
,
S. M.
and
Russell
,
C. T.
, “
Hydrodynamic and MHD equations across the bow shock and along the surfaces of planetary obstacles
,”
Space Sci. Rev.
79
,
757
(
1997
).
26.
Ramos-Martínez
,
M.
,
Gómez
,
G. C.
, and
Pérez-Villegas
,
Á.
, “
MHD simulations of ram pressure stripping of a disc galaxy
,”
Mon. Not. R. Astron. Soc.
476
,
3781
(
2018
).
27.
Richardson
,
J. D.
, “
The magnetosheaths of the outer planets
,”
Planet. Space Sci.
50
,
503
(
2002
).
28.
Röken
,
C.
,
Kleimann
,
J.
, and
Fichtner
,
H.
, “
An exact analytical solution for the interstellar magnetic field in the vicinity of the heliosphere
,”
Astrophys. J.
805
,
173
(
2015
).
29.
Romashets
,
E. P.
and
Vandas
,
M.
, “
Analytic modeling of magnetic field in the magnetosheath and outer magnetosphere
,”
J. Geophys. Res.
124
,
2697
, https://doi.org/10.1029/2018JA026006 (
2019
).
30.
Scudder
,
J. D.
, “
On the causes of temperature change in inhomogeneous low-density astrophysical plasmas
,”
Astrophys. J.
398
,
299
(
1992
).
31.
Silveira
,
F. E. M.
,
Benetti
,
M. H.
, and
Caldas
,
I. L.
, “
Equation of state of the kappa-distributed solar wind particles in the Earth's magnetopause
,”
Sol. Phys.
296
,
113
(
2021
).
32.
Spreiter
,
J. R.
and
Stahara
,
S. S.
, “
The location of planetary bow shocks: A critical overview of theory and observations
,”
Adv. Space Res.
15
,
433
(
1995
).
33.
Stern
,
D. P.
, “
The motion of magnetic field lines
,”
Space Sci. Rev.
6
,
147
(
1966
).
You do not currently have access to this content.