The effect of shape on the dynamics of suspensions of non-spherical heavy particles is examined by fully resolved numerical simulations of oblate and prolate spheroids, as well as spheres, for a density ratio of ten, volume fractions ranging from 0.5% to 5%, and Reynolds numbers between 20 and 30. The dynamics is determined both by the interactions of the particles with the fluid as well as by collisions, with the number and importance of collisions increasing with volume fractions. A single isolated oblate or prolate spheroid falling under gravity generally falls broadside on, for the governing parameters examined here, and at low-volume fractions, the majority of particles in a suspension fall that way. At higher-volume fractions, the orientation is more random. The slip velocity decreases as the volume fraction increases for all shapes, as expected, but the effect of the shape is much less than seen for a single particle. This seems to be due to two effects. For all volume fractions, the most deformed particles cluster more than spheres and less deformed particles, which increases their slip velocity. As the concentration increases, the increased particle interactions also causes more particles to fall short side-on, which reduces the frontal area and the resulting drag, increasing the slip velocity. This second effect is, of course, absent for spherical particles.

1.
Ardekani
,
M. N.
and
Brandt
,
L.
, “
Turbulence modulation in channel flow of finite-size spheroidal particles
,”
J. Fluid Mech.
859
,
887
901
(
2019
).
2.
Ardekani
,
M. N.
,
Costa
,
P.
,
Breugem
,
W. P.
, and
Brandt
,
L.
, “
Numerical study of the sedimentation of spheroidal particles
,”
Int. J. Multiphase Flow
87
,
16
34
(
2016
).
3.
Ardekani
,
M. N.
,
Costa
,
P.
,
Breugem
,
W.-P.
,
Picano
,
F.
, and
Brandt
,
L.
, “
Drag reduction in turbulent channel flow laden with finite-size oblate spheroids
,”
J. Fluid Mech.
816
,
43
70
(
2017
).
4.
Brändle de Motta
,
J. C.
,
Breugem
,
W.-P.
,
Gazanion
,
B.
,
Estivalezes
,
J.-L.
,
Vincent
,
S.
, and
Climent
,
E.
, “
Numerical modelling of finite-size particle collisions in a viscous fluid
,”
Phys. Fluids
25
(
8
),
083302
(
2013
).
5.
Brandt
,
L.
and
Coletti
,
F.
, “
Particle-laden turbulence: Progress and perspectives
,”
Annu. Rev. Fluid Mech.
54
,
159
189
(
2022
).
6.
Buettner
,
K. E.
,
Curtis
,
J. S.
, and
Sarkar
,
A.
, “
Fluid-particle drag force measurements from particle-resolved CFD simulations of flow past random arrays of ellipsoidal particles
,”
Chem. Eng. Sci.
235
,
116469
(
2021
).
7.
Bunner
,
B.
and
Tryggvason
,
G.
, “
Dynamics of homogeneous bubbly flows: Part 1. Rise velocity and microstructure of the bubbles
,”
J. Fluid Mech.
466
,
17
52
(
2002a
).
8.
Bunner
,
B.
and
Tryggvason
,
G.
, “
Dynamics of homogeneous bubbly flows. Part 2, fluctuations of the bubbles and the liquid
,”
J. Fluid Mech.
466
,
53
84
(
2002b
).
9.
Cahyadi
,
A.
,
Anantharaman
,
A.
,
Yang
,
S.
,
Karri
,
S. R.
,
Findlay
,
J. G.
,
Cocco
,
R. A.
, and
Chew
,
J. W.
, “
Review of cluster characteristics in circulating fluidized bed (CFB) risers
,”
Chem. Eng. Sci.
158
,
70
95
(
2017
).
10.
Capecelatro
,
J.
,
Pepiot
,
P.
, and
Desjardins
,
O.
, “
Numerical characterization and modeling of particle clustering in wall-bounded vertical risers
,”
Chem. Eng. J.
245
,
295
310
(
2014
).
11.
Chen
,
Y.
and
Müller
,
C. R.
, “
Development of a drag force correlation for assemblies of cubic particles: The effect of solid volume fraction and Reynolds number
,”
Chem. Eng. Sci.
192
,
1157
1166
(
2018
).
12.
Clark
,
P. J.
and
Evans
,
F. C.
, “
Distance to nearest neighbor as a measure of spatial relationships in populations
,”
Ecology
35
,
445
453
(
1954
).
13.
Clift
,
R.
,
Grace
,
J.
, and
Weber
,
M.
,
Bubbles, Drops, and Particles
(
Academic Press
,
1978
).
14.
Crowe
,
C.
,
Sommerfeld
,
M.
, and
Tsuji
,
Y.
,
Multiphase Flows with Droplets and Particles
(
CRC Press
,
1998
).
15.
Derksen
,
J. J.
, “
Simulations of granular bed erosion due to laminar shear flow near the critical Shields number
,”
Phys. Fluids
23
(
11
),
113303
(
2011
).
16.
Dong
,
K.
,
Wang
,
C.
, and
Yu
,
A.
, “
Voronoi analysis of the packings of non-spherical particles
,”
Chem. Eng. Sci.
153
,
330
343
(
2016
).
17.
Eshghinejadfard
,
A.
,
Hosseini
,
S. A.
, and
Thévin
,
D.
, “
Fully-resolved prolate spheroids in turbulent channel flows: A lattice Boltzmann study
,”
AIP Adv.
7
,
095007
(
2017
).
18.
Eshghinejadfard
,
A.
,
Zhao
,
L.
, and
Thévin
,
D.
, “
Lattice Boltzmann simulation of resolved oblate spheroids in wall turbulence
,”
J. Fluid Mech.
849
,
510
540
(
2018
).
19.
Esteghamatian
,
A.
,
Hammouti
,
A.
,
Lance
,
M.
, and
Wachs
,
A.
, “
Particle resolved simulations of liquid/solid and gas/solid fluidized beds
,”
Phys. Fluids
29
(
3
),
033302
(
2017
).
20.
Falgout
,
R. D.
and
Yang
,
U. M.
, “
Hypre: A library of high performance preconditioners
,” in
Proceedings of the International Conference on Computational Science-Part III (ICCS '02)
(
Springer-Verlag
,
Berlin, Heidelberg
,
2002
), pp.
632
641
. http://dl.acm.org/citation.cfm?id=645459.653635.
21.
Feng
,
J.
,
Hu
,
H. H.
, and
Joseph
,
D. D.
, “
Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 1. Sedimation
,”
J. Fluid Mech.
261
,
95
134
(
1994
).
22.
Feng
,
J.
,
Hu
,
H. H.
, and
Joseph
,
D. D.
, “
Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 2. Couette and Poiseuille flows
,”
J. Fluid Mech.
277
,
271
301
(
1995
).
23.
Fong
,
K. O.
and
Coletti
,
F.
, “
Experimental analysis of particle clustering in moderately dense gas-solid flow
,”
J. Fluid Mech.
933
,
A6
(
2022
).
24.
Fonseca
,
F.
and
Herrmann
,
H.
, “
Simulation of the sedimentation of a falling oblate ellipsoid
,”
Physica A
345
,
341
355
(
2005
).
25.
Fornari
,
W.
,
Ardekani
,
M. N.
, and
Brandt
,
L.
, “
Clustering and increased settling speed of oblate particles at finite Reynolds number
,”
J. Fluid Mech.
848
,
696
721
(
2018
).
26.
Glowinski
,
R.
,
Pan
,
T. W.
,
Helsa
,
T. I.
,
Joseph
,
D. D.
, and
Periaux
,
J.
, “
A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate flow
,”
J. Comput. Phys.
169
,
363
426
(
2001
).
27.
Guo
,
J.
,
Zhou
,
Q.
, and
Wong
,
R. C.-K.
, “
Effects of volume fraction and particle shape on the rheological properties of oblate spheroid suspensions
,”
Phys. Fluids
33
,
081703
(
2021
).
28.
He
,
L.
and
Tafti
,
D. K.
, “
A supervised machine learning approach for predicting variable drag forces on spherical particles in suspension
,”
Powder Technol.
345
,
379
389
(
2019
).
29.
He
,
L.
,
Tafti
,
D. K.
, and
Nagendra
,
K.
, “
Evaluation of drag correlations using particle resolved simulations of spheres and ellipsoids in assembly
,”
Powder Technol.
313
,
332
343
(
2017
).
30.
Igci
,
Y.
,
Andrews
IV,
A. T.
,
Sundaresan
,
S.
,
Pannala
,
S.
, and
O'Brien
,
T.
, “
Filtered two-fluid models for fluidized gas-particle suspensions
,”
AIChE J.
54
,
1431
1448
(
2008
).
31.
Jiang
,
X.
,
Xu
,
C.
, and
Zhao
,
L.
, “
Prolate spheroids settling in a quiescent fluid: Clustering, microstructures and collisions
,” arXiv:2404.11832v1 (
2024
).
32.
Kajishima
,
T.
and
Takiguchi
,
S.
, “
Interaction between particle clusters and particle-induced turbulence
,”
Int. J. Heat Fluid Flow
23
,
639
646
(
2002
).
33.
Kravets
,
B.
,
Schulz
,
D.
,
Jasevičius
,
R.
,
Reinecke
,
S.
,
Rosemann
,
T.
, and
Kruggel-Emden
,
H.
, “
Comparison of particle-resolved DNS (PR-DNS) and non-resolved DEM/CFD simulations of flow through homogenous ensembles of fixed spherical and non-spherical particles
,”
Adv. Powder Technol.
32
,
1170
1195
(
2021
).
34.
Kriebitzsch
,
S.
,
van der Hoef
,
M.
, and
Kuipers
,
J.
, “
Fully resolved simulations of flows with non-spherical particles using an immersed boundary method
,” in
Ninth International Conference on CFD in Minerals and Process Industries, 10–12 December
(
CSIRO
,
Melbourne Australia
,
2012
).
35.
Lu
,
J.
,
Xu
,
X.
,
Zhong
,
S.
,
Ni
,
R.
, and
Tryggvason
,
G.
, “
The dynamics of suspensions of prolate spheroidal particles—Effects of volume fraction
,”
Int. J. Multiphase Flow
165
,
104469
(
2023
).
36.
Lucci
,
F.
,
Ferrante
,
A.
, and
Elghobashi
,
S.
, “
Modulation of isotropic turbulence by particles of Taylor-length scale size
,”
J. Fluid Mech.
650
,
5
55
(
2010
).
37.
Ma
,
H.
,
Zhou
,
L.
,
Liu
,
Z.
,
Chen
,
M.
,
Xia
,
X.
, and
Zhao
,
Y.
, “
A review of recent development for the CFD-DEM investigations of non-spherical particles
,”
Powder Technol.
412
,
117972
(
2022
).
38.
Michaelides
,
E.
,
Particles, Bubbles and Drops: Their Motion, Heat and Mass Transfer
(
World Scientific Publishing Co Inc
.,
2006
).
39.
Michaelides
,
E. E.
and
Feng
,
Z.
, “
Review-drag coefficients of non-spherical and irregularly shaped particles
,”
J. Fluids Eng.
145
,
060801
(
2023
).
40.
More
,
R. V.
,
Ardekani
,
M. N.
,
Brandt
,
L.
, and
Ardekani
,
A. M.
, “
Orientation instability of settling spheroids in a linearly density stratified fluid
,”
J. Fluid Mech.
929
,
A7
(
2021
).
41.
Moriche
,
M.
,
Hettmann
,
D.
,
García-Villalba
,
M.
, and
Uhlmann
,
M.
, “
On the clustering of low-aspect-ratio oblate spheroids settling in ambient fluid
,”
J. Fluid Mech.
963
,
A1
(
2023
).
42.
Moriche
,
M.
,
Uhlmann
,
M.
, and
Dušek
,
J.
, “
A single oblate spheroid settling in unbounded ambient fluid: A benchmark for simulations in steady and unsteady wake regimes
,”
Int. J. Multiphase Flow
136
,
103519
(
2021
).
43.
Norori-McCormac
,
A.
,
Brito-Parada
,
P.
,
Hadler
,
K.
,
Cole
,
K.
, and
Cilliers
,
J.
, “
The effect of particle size distribution on froth stability in flotation
,”
Sep. Purif. Technol.
184
,
240
247
(
2017
).
44.
Romanus
,
R. S.
,
Lugarini
,
A.
, and
Franco
,
A. T.
, “
An immersed boundary-lattice Boltzmann framework for fully resolved simulations of non-spherical particle settling in unbounded domain
,”
Comput. Math. Appl.
102
,
206
219
(
2021
).
45.
Schaller
,
F. M.
,
Kapfer
,
S. C.
,
Evans
,
M. E.
,
Hoffmann
,
M. J.
,
Aste
,
T.
,
Saadatfar
,
M.
,
Mecke
,
K.
,
Delaney
,
G. W.
, and
Schröder-Turk
,
G. E.
, “
Set Voronoi diagrams of 3D assemblies of aspherical particles
,”
Philos. Mag.
93
,
3993
4017
(
2013
).
46.
Seyed-Ahmadi
,
A.
and
Wachs
,
A.
, “
Dynamics and wakes of freely settling and rising cubes
,”
Phys. Rev. Fluids
4
,
074304
(
2019
).
47.
Shaffer
,
F.
,
Gopalan
,
B.
,
Breault
,
R. W.
,
Cocco
,
R.
,
Karri
,
S. R.
,
Hays
,
R.
, and
Knowlton
,
T.
, “
High speed imaging of particle flow fields in CFB risers
,”
Powder Technol.
242
,
86
99
(
2013
).
48.
Shajahan
,
T.
and
Breugem
,
W.
, “
Influence of concentration on sedimentation of a dense suspension in a viscous fluid
,”
Flow, Turbul. Combust.
105
,
537
554
(
2020
).
49.
Shajahan
,
T.
and
Breugem
,
W.-P.
, “
Inertial effects in sedimenting suspensions of solid spheres in a liquid
,”
Int. J. Multiphase Flow
166
,
104498
(
2023
).
50.
Sundaresan
,
S.
,
Ozel
,
A.
, and
Kolehmainen
,
J.
, “
Toward constitutive models for momentum, species, and energy transport in gas-particle flows
,”
Annu. Rev. Chem. Biomol. Eng.
9
,
61
81
(
2018
).
51.
Tenneti
,
S.
and
Subramaniam
,
S.
, “
Particle-resolved direct numerical simulation for gas-solid flow model development
,”
Annu. Rev. Fluid Mech.
46
,
199
230
(
2014
).
52.
Uhlmann
,
M.
, “
An immersed boundary method with direct forcing for the simulation of particulate flows
,”
J. Comput. Phys.
209
,
448
476
(
2005
).
53.
Uhlmann
,
M.
, “
Interface-resolved direct numerical simulation of vertical particulate channel flow in the turbulent regime
,”
Phys. Fluids
20
(
5
),
053305
(
2008
).
54.
Uhlmann
,
M.
and
Doychev
,
T.
, “
Sedimentation of a dilute suspension of rigid spheres at intermediate Galileo numbers: The effect of clustering upon the particle motion
,”
J. Fluid Mech.
752
,
310
348
(
2014
).
55.
Uhlmann
,
M.
,
Derksen
,
J.
,
Wachs
,
A.
,
Wang
,
L.-P.
, and
Moriche
,
M.
, “
Efficient methods for particle-resolved direct numerical simulation
,” in
Modeling Approaches and Computational Methods for Particle-Laden Turbulent Flows
, edited by
S.
Subramaniam
and
S.
Balachandar
(
Academic Press
,
2023
).
56.
Verma
,
V.
,
Padding
,
J. T.
,
Deen
,
N. G.
, and
Kuipers
,
J. A. M. H.
, “
Bubble dynamics in a 3-D gas-solid fluidized bed using ultrafast electron beam X-ray tomography and two-fluid model
,”
AIChE J.
60
,
1632
1644
(
2014
).
57.
Willen
,
D. P.
and
Prosperetti
,
A.
, “
Resolved simulations of sedimenting suspensions of spheres
,”
Phys. Rev. Fluids
4
,
014304
(
2019
).
58.
Xia
,
Y.
,
Yu
,
Z.
,
Pan
,
D.
,
Lin
,
Z.
, and
Guo
,
Y.
, “
Drag model from interface-resolved simulations of particle sedimentation in a periodic domain and vertical turbulent channel flows
,”
J. Fluid Mech.
944
,
A25
(
2022
).
59.
You
,
Y.
and
Zhao
,
Y.
, “
Discrete element modelling of ellipsoidal particles using superellipsoids and multi-spheres: A comparative study
,”
Powder Technol.
331
,
179
191
(
2018
).
60.
Zaidi
,
A. A.
, “
Particle resolved direct numerical simulation of free settling particles for the study of effects of momentum response time on drag force
,”
Powder Technol.
335
,
222
234
(
2018
).
61.
Zaidi
,
A. A.
,
Tsuji
,
T.
, and
Tanaka
,
T.
, “
Direct numerical simulation of finite sized particles settling for high Reynolds number and dilute suspension
,”
Int. J. Heat Fluid Flow
50
,
330
341
(
2014
).
62.
Zhang
,
Z.
and
Prosperetti
,
A.
, “
A method for particle simulations
,”
J. Appl. Mech.
70
,
64
74
(
2003
).
63.
Zhou
,
G.
and
Prosperetti
,
A.
, “
Inertial effects in shear flow of a fluid-particle mixture: Resolved simulations
,”
Phys. Rev. Fluids
5
,
084301
(
2020
).
64.
Zhou
,
W.
,
Crust
,
M.
, and
Duˇsek
,
J.
, “
Path instabilities of oblate spheroids
,”
J. Fluid Mech.
833
,
445
468
(
2017
).
65.
Zhou
,
Z.
,
Pinson
,
D.
,
Zou
,
R.
, and
Yu
,
A.
, “
Discrete particle simulation of gas fluidization of ellipsoidal particles
,”
Chem. Eng. Sci.
66
,
6128
6145
(
2011
).
66.
Zhu
,
C.
,
Yu
,
Z.
,
Pan
,
D.
, and
Shao
,
X.
, “
Interface-resolved direct numerical simulations of the interactions between spheroidal particles and upward vertical turbulent channel flows
,”
J. Fluid Mech.
891
,
A6
(
2020
).
You do not currently have access to this content.