The interaction between droplets and a liquid pool is a widely observed fluid phenomenon with significant relevance to various industrial applications. This study numerically investigates the impact of both a single droplet and two successive droplets on a liquid pool with a fixed thickness. Particular emphasis was focused on the evolution of cavity depth and width during the deformation process. For single droplet impacts, the cavity depth exhibits linear growth with time in the early stage, consistent with predictions based on energy balance. This growth is independent of the Weber number (We) within the explored range of 96< We<345. Similarly, the cavity width shows weak dependence on the Weber number during early development, deviating and reaching a maximum width at later times. The maximum cavity width follows a power-law relationship with the Weber number, with a 0.5 exponent. In the case of successive droplet impacts with small initial separation, cavity depth also evolves linearly with time in the early stage but over an extended period. This prolonged growth is attributed to droplet merging, resulting in an effectively larger merged droplet. However, for successive droplets with large separation, the two linear growth stages exhibit intermittent interruptions due to the second impact occurring at a later time. The variation in cavity width due to different initial spacings between two successive droplets still exhibits similarity until a larger spacing causes a change in the rate of cavity width development.

1.
H.
Smith
,
G.
Levy
, and
I.
Shainberg
, “
Water-droplet energy and soil amendments: Effect on infiltration and erosion
,”
Soil Sci. Soc. Am. J.
54
,
1084
1087
(
1990
).
2.
M.
Rein
, “
The transitional regime between coalescing and splashing drops
,”
J. Fluid Mech.
306
,
145
165
(
1996
).
3.
L. J.
Leng
, “
Splash formation by spherical drops
,”
J. Fluid Mech.
427
,
73
105
(
2001
).
4.
W.-S.
Meng
,
C.-B.
Zhao
,
J.-Z.
Wu
,
B.-F.
Wang
,
Q.
Zhou
, and
K. L.
Chong
, “
Simulation of flow and debris migration in extreme ultraviolet source vessel
,”
Phys. Fluids
36
,
023322
(
2024
).
5.
J. C.
Huang
, “
A review of the state-of-the-art of oil spill fate/behavior models
,” in
International Oil Spill Conference
(
American Petroleum Institute
,
1983
), Vol.
1983
, pp.
313
322
.
6.
A.
van der Bos
,
M.-J.
van der Meulen
,
T.
Driessen
,
M.
van den Berg
,
H.
Reinten
,
H.
Wijshoff
,
M.
Versluis
, and
D.
Lohse
, “
Velocity profile inside piezoacoustic inkjet droplets in flight: Comparison between experiment and numerical simulation
,”
Phys. Rev. Appl.
1
,
014004
(
2014
).
7.
Y.
Guo
,
Y.
Lian
, and
M.
Sussman
, “
Investigation of drop impact on dry and wet surfaces with consideration of surrounding air
,”
Phys. Fluids
28
,
073303
(
2016
).
8.
R.
Reitz
and
C.
Rutland
, “
Development and testing of diesel engine CFD models
,”
Prog. Energy Combust. Sci.
21
,
173
196
(
1995
).
9.
D.
Lohse
, “
Fundamental fluid dynamics challenges in inkjet printing
,”
Annu. Rev. Fluid Mech.
54
,
349
382
(
2022
).
10.
A.
Prosperetti
and
H. N.
Oguz
, “
The impact of drops on liquid surfaces and the underwater noise of rain
,”
Annu. Rev. Fluid Mech.
25
,
577
602
(
1993
).
11.
A. L.
Yarin
, “
Drop impact dynamics: Splashing, spreading, receding, bouncing…
,”
Annu. Rev. Fluid Mech.
38
,
159
192
(
2006
).
12.
G.
Liang
and
I.
Mudawar
, “
Review of drop impact on heated walls
,”
Int. J. Heat Mass Transfer
106
,
103
126
(
2017
).
13.
A.
Goswami
and
Y.
Hardalupas
, “
Simultaneous impact of droplet pairs on solid surfaces
,”
J. Fluid Mech.
961
,
A17
(
2023
).
14.
C.
Clanet
,
C.
Béguin
,
D.
Richard
, and
D.
Quéré
, “
Maximal deformation of an impacting drop
,”
J. Fluid Mech.
517
,
199
208
(
2004
).
15.
R.
Rioboo
,
M.
Marengo
, and
C.
Tropea
, “
Outcomes from a drop impact on solid surfaces
,”
Atomization Sprays
11
,
155
160
(
2001
).
16.
A.
Gupta
and
R.
Kumar
, “
Two-dimensional lattice Boltzmann model for droplet impingement and breakup in low density ratio liquids
,”
Commun. Comput. Phys.
10
,
767
784
(
2011
).
17.
M.
Rein
, “
Phenomena of liquid drop impact on solid and liquid surfaces
,”
Fluid Dyn. Res.
12
,
61
93
(
1993
).
18.
K.-L.
Pan
and
C. K.
Law
, “
Dynamics of droplet–film collision
,”
J. Fluid Mech.
587
,
1
22
(
2007
).
19.
G.
Agbaglah
,
M.-J.
Thoraval
,
S. T.
Thoroddsen
,
L. V.
Zhang
,
K.
Fezzaa
, and
R. D.
Deegan
, “
Drop impact into a deep pool: Vortex shedding and jet formation
,”
J. Fluid Mech.
764
,
R1
(
2015
).
20.
E.
Castillo-Orozco
,
A.
Davanlou
,
P. K.
Choudhury
, and
R.
Kumar
, “
Droplet impact on deep liquid pools: Rayleigh jet to formation of secondary droplets
,”
Phys. Rev. E
92
,
053022
(
2015
).
21.
B.
Ray
,
G.
Biswas
, and
A.
Sharma
, “
Regimes during liquid drop impact on a liquid pool
,”
J. Fluid Mech.
768
,
492
523
(
2015
).
22.
H.
Wang
,
S.
Liu
,
A.-C.
Bayeul-Lainé
,
D.
Murphy
,
J.
Katz
, and
O.
Coutier-Delgosha
, “
Analysis of high-speed drop impact onto deep liquid pool
,”
J. Fluid Mech.
972
,
A31
(
2023
).
23.
T. C.
Sykes
,
R.
Cimpeanu
,
B. D.
Fudge
,
J. R.
Castrejón-Pita
, and
A. A.
Castrejón-Pita
, “
Droplet impact dynamics on shallow pools
,”
J. Fluid Mech.
970
,
A34
(
2023
).
24.
S. K.
Das
,
A.
Dalal
,
M.
Breuer
, and
G.
Biswas
, “
Evolution of jets during drop impact on a deep liquid pool
,”
Phys. Fluids
34
,
022110
(
2022
).
25.
H.
Ma
,
C.
Liu
,
X.
Li
,
H.
Huang
, and
J.
Dong
, “
Deformation characteristics and energy conversion during droplet impact on a water surface
,”
Phys. Fluids
31
,
062108
(
2019
).
26.
I. V.
Roisman
,
N. P.
van Hinsberg
, and
C.
Tropea
, “
Propagation of a kinematic instability in a liquid layer: Capillary and gravity effects
,”
Phys. Rev. E
77
,
046305
(
2008
).
27.
D.
Roy
,
M.
Sophia
, and
S.
Basu
, “
On the mechanics of droplet surface crater during impact on immiscible viscous liquid pool
,”
J. Fluid Mech.
955
,
A27
(
2023
).
28.
U.
Jain
,
M.
Jalaal
,
D.
Lohse
, and
D.
van der Meer
, “
Deep pool water-impacts of viscous oil droplets
,”
Soft Matter
15
,
4629
4638
(
2019
).
29.
N. P.
Van Hinsberg
,
M.
Budakli
,
S.
Göhler
,
E.
Berberović
,
I. V.
Roisman
,
T.
Gambaryan-Roisman
,
C.
Tropea
, and
P.
Stephan
, “
Dynamics of the cavity and the surface film for impingements of single drops on liquid films of various thicknesses
,”
J. Colloid Interface Sci.
350
,
336
343
(
2010
).
30.
M.
Guilizzoni
,
M.
Santini
, and
S.
Fest-Santini
, “
Synchronized multiple drop impacts into a deep pool
,”
Fluids
4
,
141
(
2019
).
31.
M.
Guilizzoni
and
G.
Frontera
, “
Crater depth after the impact of multiple drops into deep pools
,”
Fluids
7
,
50
(
2022
).
32.
G.
Tryggvason
,
R.
Scardovelli
, and
S.
Zaleski
,
Direct Numerical Simulations of Gas–Liquid Multiphase Flows
(
Cambridge University Press
,
2011
).
33.
A.
Prosperetti
and
G.
Tryggvason
,
Computational Methods for Multiphase Flow
(
Cambridge University Press
,
2009
).
34.
J. U.
Brackbill
,
D. B.
Kothe
, and
C.
Zemach
, “
A continuum method for modeling surface tension
,”
J. Comput. Phys.
100
,
335
354
(
1992
).
35.
S.
Popinet
, “
A quadtree-adaptive multigrid solver for the Serre–Green–Naghdi equations
,”
J. Comput. Phys.
302
,
336
358
(
2015
).
36.
D.
Morton
,
M.
Rudman
, and
L.
Jong-Leng
, “
An investigation of the flow regimes resulting from splashing drops
,”
Phys. Fluids
12
,
747
763
(
2000
).
37.
X.
Wu
and
A.
Saha
, “
Droplet impact on liquid films: Bouncing-to-merging transitions for two-liquid systems
,”
Phys. Fluids
34
,
103313
(
2022
).
38.
X.
Tang
,
A.
Saha
,
C. K.
Law
, and
C.
Sun
, “
Nonmonotonic response of drop impacting on liquid film: Mechanism and scaling
,”
Soft Matter
12
,
4521
4529
(
2016
).
39.
T.
Tran
,
H.
de Maleprade
,
C.
Sun
, and
D.
Lohse
, “
Air entrainment during impact of droplets on liquid surfaces
,”
J. Fluid Mech.
726
,
R3
(
2013
).
You do not currently have access to this content.