Understanding the molecular basis of rheological properties is crucial from both experimental and theoretical perspectives. Slit rheometry is commonly employed to measure the viscosity of fluids. This study utilized molecular dynamics simulations to investigate isothermal contraction flow at the nanoscale. Short linear polyethylene chains were uniformly extruded by a constant-speed piston from a reservoir through an abrupt contraction slit into the surrounding vacuum. Overall, die swelling and die wetting phenomena were observed. Molecular chains were stretched within the slit, while those outside the slit shrunk. Notably, the velocity profile within the slit varied with wall slip at different extrusion velocities. The relationship between the apparent shear viscosity and shear rate exhibited two primary characteristics: the first-Newtonian plateau and the shear thinning slope. Therefore, this molecular simulation method effectively demonstrates the general non-Newtonian behavior of macroscopic polymer fluids.

1.
R. B.
Bird
,
R. C.
Armstrong
, and
O.
Hassager
,
Dynamics of Polymeric Liquids: Fluid Mechanics
(
Wiley-Interscience
,
New York
,
1987
).
2.
C. W.
Macosko
,
Rheology: Principles, Measurements, and Applications
(
Wiley-VCH
,
New York
,
1994
).
3.
F. A.
Morrison
,
Understanding Rheology
(
Oxford University
,
New York
,
2001
).
4.
N.
Phan-Thien
,
Understanding Viscoelasticity: An Introduction to Rheology
(
Springer-Verlag
,
Berlin
,
2013
).
5.
R. I.
Tanner
,
Engineering Rheology
(
Oxford University Press
,
New York
,
1989
).
6.
R. B.
Bird
and
J. M.
Wiest
, “
Constitutive equations for polymeric liquids
,”
Annu. Rev. Fluid Mech.
27
,
169
193
(
1995
).
7.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquid
(
Clarendon Press
,
Oxford
,
1989
).
8.
J. M.
Haile
,
Molecular Dynamics Simulation
(
Wiley-Interscience
,
New York
,
1997
).
9.
D. C.
Rapaport
,
The Art of Molecular Dynamics Simulation
(
Cambridge University Press
,
New York
,
2004
).
10.
G.
Karniadakis
,
Microflows and Nanoflows Fundamentals and Simulation
(
Springer Science
,
New York
,
2005
).
11.
B. J.
Edwards
,
M. H. N.
Sefiddashti
, and
B.
Khomami
, “
Atomistic simulation of shear flow of linear alkane and polyethylene liquids: A 50-year retrospective
,”
J. Rheol.
66
,
415
(
2022
).
12.
G.
Ciccotti
,
C.
Dellago
,
M.
Ferrario
,
E. R.
Hernández
, and
M. E.
Tuckerman
, “
Molecular Simulations: Past, present, and future
,”
Eur. Phys. J. B
95
,
3
(
2022
).
13.
H.-C.
Tseng
,
J.-S.
Wu
, and
R.-Y.
Chang
, “
Shear thinning and shear dilatancy of liquid N-hexadecane via equilibrium and nonequilibrium molecular dynamics simulations: Temperature, pressure, and density effects
,”
J. Chem. Phys.
129
,
014502
(
2008
).
14.
H.-C.
Tseng
,
J.-S.
Wu
, and
R.-Y.
Chang
, “
Master curves and radial distribution functions for shear dilatancy of liquid N-hexadecane via nonequilibrium molecular dynamics simulations
,”
J. Chem. Phys.
130
,
164515
(
2009
).
15.
H.-C.
Tseng
,
J.-S.
Wu
, and
R.-Y.
Chang
, “
Nano-contraction flows of short-chain polyethylene via molecular dynamics simulations
,”
Mol. Simul.
35
,
691
704
(
2009
).
16.
H.-C.
Tseng
,
J.-S.
Wu
, and
R.-Y.
Chang
, “
Material functions of liquid N-hexadecane under steady shear via non-equilibrium molecular dynamics simulations: Temperature, pressure, and density effects
,”
J. Chem. Phys.
130
,
084904
(
2009
).
17.
H.-C.
Tseng
,
J.-S.
Wu
, and
R.-Y.
Chang
, “
Linear viscoelasticity and thermorheological simplicity of N-hexadecane fluids under oscillatory shear via non-equilibrium molecular dynamics simulations
,”
Phys. Chem. Chem. Phys.
12
,
4051
4065
(
2010
).
18.
H.-C.
Tseng
,
R.-Y.
Chang
, and
J.-S.
Wu
, “
Molecular structural property and potential energy dependence on nonequilibrium-thermodynamic state point of liquid N-hexadecane under shear
,”
J. Chem. Phys.
134
,
044511
(
2011
).
19.
H.-C.
Tseng
, “
The identification of the generalized maxwell linear viscoelastic fluid for liquid N-hexadecane via non-equilibrium molecular dynamics simulations
,”
Mol. Simul.
50
,
463
469
(
2024
).
20.
J.
Koplik
and
J.
Banavar
, “
Corner flow in the sliding plate problem
,”
Phys. Fluids
7
,
3118
3125
(
1995
).
21.
J.
Koplik
and
J. R.
Banavar
, “
Reentrant corner flows of Newtonian and non-Newtonian fluids
,”
J. Rheol.
41
,
787
805
(
1997
).
22.
Y.-J.
Juang
,
S.
Wang
,
X.
Hu
, and
L. J.
Lee
, “
Dynamics of single polymers in a stagnation flow induced by electrokinetics
,”
Phys. Rev. Lett.
93
,
268105
268108
(
2004
).
23.
R. C.
Lincoln
,
K. M.
Koliwad
, and
P. B.
Ghate
, “
Morse-potential evaluation of second- and third-order elastic constants of some cubic metals
,”
Phys. Rev.
157
,
463
466
(
1967
).
24.
K. J.
Tupper
and
D. W.
Brenner
, “
Compression-induced structural transition in a self-assembled monolayer
,”
Langmuir
10
,
2335
2338
(
1994
).
25.
S.
Chynoweth
,
R. C.
Coy
, and
Y.
Michopoulos
, “
Simulated non-Newtonian lubricant behaviour under extreme conditions
,”
Proc. Inst. Mech. Eng., Part J
209
,
243
254
(
1995
).
26.
S.
Chynoweth
and
Y.
Michopoulos
, “
An improved potential model for N-hexadecane molecular dynamics simulations under extreme condition
,”
Mol. Phys.
81
,
133
141
(
1994
).
27.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase space distributions
,”
Phys. Rev. A
31
,
1695
1697
(
1985
).
28.
P. J.
Shrewsbury
,
S. J.
Muller
, and
D.
Liepmann
, “
Effect of flow on complex biological macromolecules in microfluidic devices
,”
Biomed. Microdevices
3
,
225
238
(
2001
).
You do not currently have access to this content.