The interaction between cavitation bubbles and free surfaces in non-Newtonian biological fluid holds significant importance for biomedical fields like drug delivery and disease treatment. This paper investigates the influences of elasticity and shear-thinning of non-Newtonian fluid on the interaction between cavitation bubbles and free surfaces by performing visualization experiments on the laser-induced cavitation bubbles near the free surfaces of the water and carboxymethyl cellulose and polyacrylamide solutions with the concentrations of 500–5000 ppm at different dimensionless standoff distances. The results show that the evolutions of free surface in all solutions can be divided into six patterns of water mounds. The elasticity and shear-thinning exhibit significant effects on the four patterns at smaller dimensionless standoff distances (breaking wrinkles, spraying water film, crown, and swallowed water spike) and the evolutions of cavitation bubbles in the corresponding cases. The resultant differences lie in the morphology and migration of bubbles and the stability and morphology of the water spike and water skirt. Combining with the quantitative analyses, it can be concluded that elasticity inhibits the movement and pinch-off of water spike, water skirt expansion, bubble jet motion, and bubble growth and migration within its second period. Conversely, shear-thinning could counteract the inhibitory effects of elasticity in the solutions with lower concentrations, promoting the rise in water spike, water skirt expansion, and bubble jet motion. Finally, the influence mechanisms of elasticity and shear-thinning on the evolution of free surface and cavitation bubble dynamics are revealed from the perspective of the deformation of polymer molecular chains.

1.
C. E.
Brennen
,
Cavitation and Bubble Dynamics
(
Oxford University Press
,
1995
), Vol.
294
, pp.
208
223
.
2.
H. P.
Le
, “
Progress and trends in ink-jet printing technology
,”
J. Image Sci. Technol.
42
(
1
),
49
62
(
1998
).
3.
C. B.
Arnold
,
P.
Serra
, and
A.
Piqué
, “
Laser direct-write techniques for printing of complex materials
,”
MRS Bull.
32
(
01
),
23
31
(
2007
).
4.
A.
Dadvand
,
B. C.
Khoo
, and
M. T.
Shervani-Tabar
, “
A collapsing bubble-induced microinjector: An experimental study
,”
Exp. Fluids
46
,
419
(
2009
).
5.
K. S.
Suslick
, “
Sonochemistry
,”
Science
247
(
4949
),
1439
1445
(
1990
).
6.
W. D.
Song
,
M. H.
Hong
,
B.
Lukyanchuk
, and
T. C.
Chong
, “
Laser-induced cavitation bubbles for cleaning of solid surfaces
,”
J. Appl. Phys.
95
(
6
),
2952
(
2004
).
7.
G. L.
Chahine
,
A.
Kapahi
,
J. K.
Choi
et al, “
Modeling of surface cleaning by cavitation bubble dynamics and collapse
,”
Ultrason. Sonochem.
29
,
528
549
(
2016
).
8.
E.
Johnsen
and
T.
Colonius
, “
Shock-induced collapse of a gas bubble in shockwave lithotripsy
,”
J. Acoust. Soc. Am.
124
,
2011
2020
(
2008
).
9.
T.
Kodama
and
K.
Takayama
, “
Dynamic behavior of bubbles during extracorporeal shock-wave lithotripsy
,”
Ultrasound Med. Biol.
24
(
5
),
723
738
(
1998
).
10.
E.-A.
Brujan
,
K.
Nahen
,
P.
Schmidt
, and
A.
Vogel
, “
Dynamics of laser-induced cavitation bubbles near elastic boundaries: Influence of the elastic modulus
,”
J. Fluid Mech.
433
,
283
314
(
2001
).
11.
S. Y.
Cho
,
O.
Kwon
,
S.-C.
Kim
et al, “
Understanding cavitation-related mechanism of therapeutic ultrasound in the field of urology: Part I of therapeutic ultrasound in urology
,”
Investig. Clin. Urol.
63
(
4
),
385
393
(
2022
).
12.
T.
Lee
,
H. W.
Baac
,
J. G.
Ok
et al, “
Nozzle-free liquid microjetting via homogeneous bubble nucleation
,”
Phys. Rev. Appl.
3
(
4
),
044007
(
2015
).
13.
N.
Kyriazis
,
P.
Koukouvinis
, and
M.
Gavaises
, “
Numerical investigations on bubble-induced jetting and shock wave focusing: Application on a needle-free injection
,”
Proc. R. Soc. A
475
(
2222
),
20180548
(
2019
).
14.
J.
Mur
,
V.
Agrez
,
J.
Petelin
, and
R.
Petkovšek
, “
Microbubble dynamics and jetting near tissue-phantom biointerfaces
,”
Biomed. Opt. Express
13
(
2
),
1061
1069
(
2022
).
15.
E. C.
Unger
,
E.
Hersh
,
M.
Vannan
et al, “
Local drug and gene delivery through microbubbles
,”
Prog. Cardiovasc. Dis.
44
,
45
54
(
2001
).
16.
L. C.
Phillips
,
A. L.
Klibanov
,
B. R.
Wamhoff
et al, “
Targeted gene transfection from microbubbles into vascular smooth muscle cells using focused, ultrasound-mediated delivery
,”
Ultrasound Med. Biol.
36
(
9
),
1470
1480
(
2010
).
17.
C. C.
Coussios
and
R. A.
Roy
, “
Applications of acoustics and cavitation to noninvasive therapy and drug delivery
,”
Annu. Rev. Fluid Mech.
40
,
395
420
(
2008
).
18.
R. O.
Illing
,
J. E.
Kennedy
,
F.
Wu
et al, “
The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population
,”
Br. J. Cancer
93
(
8
),
890
895
(
2005
).
19.
H. G.
Ter
,
HIFU Tissue Ablation: Concept and Devices (Therapeutic Ultrasound)
(
Springer
,
Berlin
,
2016
), pp.
3
20
.
20.
Z. Y.
Hong
,
T.
Iino
,
H.
Hagihara
et al, “
Cell damage evaluation of mammalian cells in cell manipulation by amplified femtosecond ytterbium laser
,”
Appl. Phys. A
124
,
268
(
2018
).
21.
J.
Wischhusen
and
F.
Padilla
, “
Ultrasound-targeted microbubble destruction (UTMD) for localized drug delivery into tumor tissue
,”
Innov. Res. BioMed. Eng.
40
(
1
),
10
15
(
2019
).
22.
P. B.
Robinson
,
J. R.
Blake
,
T.
Kodama
et al, “
Interaction of cavitation bubbles with a free surface
,”
J. Appl. Phys.
89
(
12
),
8225
8237
(
2001
).
23.
S. J.
Lind
and
T. N.
Phillips
, “
The effect of viscoelasticity on the dynamics of gas bubbles near free surfaces
,”
Phys. Fluids
25
(
2
),
022104
(
2013
).
24.
D. C.
Gibson
, “
Cavitation adjacent to plane boundaries
,” in
Third Australasian Conference on Hydraulics and Fluid Mechanics
,
Sydney, Australia
(
1968
).
25.
G. L.
Chahine
, “
Interaction between an oscillating bubble and a free surface
,”
J. Fluids Eng.
99
(
4
),
709
716
(
1977
).
26.
C. C.
Ross
,
Y. T.
Chen
,
K. W.
Yu
et al, “
Exploration of water jet generated by Q-switched laser induced water breakdown with different depths beneath a flat free surface
,”
Opt. Express
21
,
445
453
(
2013
).
27.
S.
Zhang
,
S. P.
Wang
, and
A. M.
Zhang
, “
Experimental study on the interaction between bubble and free surface using a high-voltage spark generator
,”
Phys. Fluids
28
(
3
),
032109
(
2016
).
28.
Y. J.
Kang
and
Y.
Cho
, “
Gravity-capillary jet-like surface waves generated by an underwater bubble
,”
J. Fluid Mech.
866
,
841
864
(
2019
).
29.
M.-K.
Li
,
S.-P.
Wang
,
S.
Zhang
, and
H.
Sagar
, “
Experimental study of underwater explosions below a free surface: Bubble dynamics and pressure wave emission
,”
Phys. Fluids
35
(
8
),
083313
(
2023
).
30.
G.-h.
Wang
,
Y.
Du
,
Z.-j.
Xiao
et al, “
Numerical study on formation of a splash sheet induced by an oscillating bubble in extreme vicinity to a water surface
,”
J. Hydrodyn.
34
,
1021
1031
(
2022
).
31.
E.
Klaseboer
,
C. K.
Turangan
, and
B. C.
Khoo
, “
Dynamic behaviour of a bubble near an elastic infinite interface
,”
Int. J. Multiphase Flow
32
(
9
),
1110
1122
(
2006
).
32.
H.
Tang
,
Z.-L.
Tian
,
X.-Y.
Ju
et al, “
Numerical investigation on the interaction of an oscillating bubble with the interface of a non-Newtonian fluid
,”
Phys. Fluids
35
,
083324
(
2023
).
33.
F.
Hasan
,
K.
Mahmud
,
M. I.
Khan
et al, “
Cavitation induced damage in soft biomaterials
,”
Multiscale Sci. Eng.
3
,
67
87
(
2021
).
34.
G.
Strobl
,
The Physics of Polymers: Concepts for Understanding Their Structures and Behavior
, 3rd ed. (
Springer Berlin
,
Heidelberg
,
2007
), pp.
70
71
.
35.
A.
Benchabane
and
K.
Bekkour
, “
Rheological properties of carboxymethyl cellulose (CMC) solutions
,”
Colloid Polym. Sci.
286
(
10
),
1173
1180
(
2008
).
36.
M. C. F.
Soares
,
P.
Licinio
,
V.
Caliman
et al, “
Rheological studies of semidilute polyacrylamide/carbon nanotube nanofluids
,”
J. Polym. Res.
20
(
10
),
261
(
2013
).
37.
P.
Munk
,
T. M.
Aminabhavi
,
P.
Williams
et al, “
Some solution properties of polyacrylamide
,”
Macromolecules
13
(
4
),
871
875
(
1980
).
38.
Y.
Liu
,
Y.
Jun
, and
V.
Steinberg
, “
Concentration dependence of the longest relaxation times of dilute and semi-dilute polymer solutions
,”
J. Rheol.
53
(
5
),
1069
1085
(
2009
).
39.
P.
Shakeri
,
M.
Jung
, and
R.
Seemann
, “
Scaling purely elastic instability of strongly shear thinning polymer solutions
,”
Phys. Rev. E
105
(
5
),
L052501
(
2022
).
40.
D.
Obreschkow
,
M.
Bruderer
, and
M.
Farhat
, “
Analytical approximations for the collapse of an empty spherical bubble
,”
Phys. Rev. E
85
(
6
),
066303
(
2012
).
41.
Lord
Rayleigh
, “
On the pressure developed in a liquid during the collapse of a spherical cavity
,”
Philos. Mag. Ser. 6
34
,
94
98
(
1917
).
42.
A. M.
Zhang
,
C.
Wang
,
S. P.
Wang
et al, “
Experimental study of interaction between bubble and free surface
,”
Acta Phys. Sin.
61
(
8
),
084701
(
2012
) (in Chinese).
43.
A.
Pain
,
B. H. T.
Goh
,
E.
Klaseboer
et al, “
Jets in quiescent bubbles caused by a nearby oscillating bubble
,”
J. Appl. Phys.
111
(
5
),
054912
(
2012
).
44.
B.
Keshavarz
,
E. C.
Houze
,
J. R.
Moore
et al, “
Ligament mediated fragmentation of viscoelastic liquids
,”
Phys. Rev. Lett.
117
(
15
),
154502
(
2016
).
45.
J. M.
Rosselló
,
H.
Reese
, and
C. D.
Ohl
, “
Dynamics of pulsed laser-induced cavities on a liquid-gas interface: From a conical splash to a ‘bullet’ jet
,”
J. Fluid Mech.
939
,
A35
(
2022
).
46.
P. P.
Bhat
,
S.
Appathurai
,
M. T.
Harris
et al, “
Formation of beads-on-a-string structures during break-up of viscoelastic filaments
,”
Nat. Phys.
6
(
8
),
625
631
(
2010
).
47.
M. S. N.
Oliveira
,
R.
Yeh
, and
G. H.
McKinley
, “
Iterated stretching, extensional rheology and formation of beads-on-a-string structures in polymer solutions
,”
J. Non-Newtonian Fluid Mech.
137
(
1
),
137
148
(
2006
).
48.
A.
Pearson
,
E.
Cox
,
J. R.
Blake
, and
S. R.
Otto
, “
Bubble interactions near a free surface
,”
Eng. Anal. Boundary Elem.
28
,
295
313
(
2004
).
49.
S.
Li
,
A. M.
Zhang
, and
S. P.
Wang
, “
Experimental and numerical studies on ‘crown’ spike generated by a bubble near fee-surface
,”
Acta Phys. Sin.
62
(
19
),
194703
(
2013
) (in Chinese).
50.
E. A.
Brujan
, “
Shock wave emission from laser-induced cavitation bubbles in polymer solutions
,”
Ultrasonics
48
(
5
),
423
426
(
2008
).
51.
V.
Tirtaatmadja
,
G. H.
McKinley
, and
J. J.
Cooper-White
, “
Drop formation and breakup of low viscosity elastic fluids: Effects of molecular weight and concentration
,”
Phys. Fluids
18
,
043101
(
2006
).
52.
T.
Schaible
and
C.
Bonten
, “
Prediction of the bubble growth behavior by means of the time-, temperature-, pressure- and blowing agent concentration-dependent transient elongational viscosity function of polymers
,”
Polymers
16
(
9
),
1213
(
2024
).
You do not currently have access to this content.