The splashing phenomenon associated with the impact of a liquid drop on a liquid pool is investigated in this study using the volume of fluid method. The different outcomes of this phenomena largely depend on the height (/depth) of a liquid pool and the impinging drop velocity. The impingement angle, drop shape, fluid properties, and other non-isothermal effects also play a role, but we have eliminated those dependencies by considering no variation in these parameters. The different phenomena that are observed when a drop impacts a liquid pool are controlled by (i) crater depth and wave-swell (rim of the crater) expansion, (ii) wave-swell retraction followed by crater side retraction, and (iii) crater base retraction. During splashing, a deep crater is produced in the receiving liquid after the drop impact. At its rim, a crown-like cylindrical liquid film is ejected out of the crater. Small droplets are normally shed from this rim. It is seen that the depth of the pool has dramatic effects on the dynamics of the crown formed during splashing. When observed even more comprehensively, the physical attributes of the crown, such as crown height and crown radius, are found to strongly relate to the velocity of the falling drop. Finally, we try to demarcate the regions of splashing with and without the formation of secondary droplets on the regime map of Weber number–dimensionless pool depth.

1.
J. J.
Thomson
and
H. F.
Newall
, “
On the formation of vortex rings by drops falling into liquids, and some allied phenomena
,”
Proc. R. Soc. London
39
,
417
436
(
1886
).
2.
H. C.
Pumphrey
,
L. A.
Crum
, and
L.
Bjørnø
, “
Underwater sound produced by individual drop impacts and rainfall
,”
J. Acoust. Soc. Am.
85
,
1518
1526
(
1989
).
3.
H. A.
Stone
,
A. D.
Stroock
, and
A.
Ajdari
, “
Engineering flows in small devices: Microfluidics toward a lab-on-a-chip
,”
Annu. Rev. Fluid Mech.
36
,
381
411
(
2004
).
4.
S. T.
Thoroddsen
,
T. G.
Etoh
, and
K.
Takehara
, “
High-speed imaging of drops and bubbles
,”
Annu. Rev. Fluid Mech.
40
,
257
285
(
2008
).
5.
F.
Blanchette
and
T. P.
Bigioni
, “
Partial coalescence of drops at liquid interfaces
,”
Nat. Phys.
2
,
254
257
(
2006
).
6.
X.
Chen
,
S.
Mandre
, and
J. J.
Feng
, “
Partial coalescence between a drop and a liquid-liquid interface
,”
Phys. Fluids
18
,
051705
(
2006
).
7.
S. T.
Thoroddsen
and
K.
Takehara
, “
The coalescence cascade of a drop
,”
Phys. Fluids
12
,
1265
1267
(
2000
).
8.
B.
Ray
,
G.
Biswas
, and
A.
Sharma
, “
Generation of secondary droplets in coalescence of a drop at a liquid–liquid interface
,”
J. Fluid Mech.
655
,
72
104
(
2010
).
9.
B.
Ray
,
G.
Biswas
,
A.
Sharma
, and
S. W. J.
Welch
, “
CLSVOF method to study consecutive drop impact on liquid pool
,”
Int. J. Numer. Methods Heat Fluid Flow
23
,
143
158
(
2013
).
10.
X.
Chen
,
S.
Mandre
, and
J. J.
Feng
, “
An experimental study of the coalescence between a drop and an interface in Newtonian and polymeric liquids
,”
Phys. Fluids
18
,
092103
(
2006
).
11.
S. T.
Thoroddsen
,
K.
Takehara
, and
T. G.
Etoh
, “
The coalescence speed of a pendent and a sessile drop
,”
J. Fluid Mech.
527
,
85
114
(
2005
).
12.
H.
Deka
,
G.
Biswas
,
S.
Chakraborty
, and
A.
Dalal
, “
Coalescence dynamics of unequal sized drops
,”
Phys. Fluids
31
,
012105
(
2019
).
13.
T.
Gilet
,
N.
Vandewalle
, and
S.
Dorbolo
, “
Controlling the partial coalescence of a droplet on a vertically vibrated bath
,”
Phys. Rev. E
76
,
035302
(
2007
).
14.
C.
Tang
,
P.
Zhang
, and
C. K.
Law
, “
Bouncing, coalescence, and separation in head-on collision of unequal-size droplets
,”
Phys. Fluids
24
,
022101
(
2012
).
15.
A.
Paul
,
B.
Ray
,
K. C.
Sahu
, and
G.
Biswas
, “
An investigation on the impact of two vertically aligned drops on a liquid surface
,”
Int. J. Multiphase Flow
168
,
104588
(
2023
).
16.
H. C.
Pumphrey
and
P. A.
Elmore
, “
The entrainment of bubbles by drop impacts
,”
J. Fluid Mech.
220
,
539
567
(
1990
).
17.
A.-B.
Wang
,
C.-C.
Kuan
, and
P.-H.
Tsai
, “
Do we understand the bubble formation by a single drop impacting upon liquid surface?
,”
Phys. Fluids
25
,
101702
(
2013
).
18.
H.
Deka
,
B.
Ray
,
G.
Biswas
,
A.
Dalal
,
P.-H.
Tsai
, and
A.-B.
Wang
, “
The regime of large bubble entrapment during a single drop impact on a liquid pool
,”
Phys. Fluids
29
,
092101
(
2017
).
19.
N. V.
Anirudh
,
S.
Behera
, and
K. C.
Sahu
, “
Coalescence of non-spherical drops with a liquid surface
,”
Int. J. Multiphase Flow
175
,
104800
(
2024
).
20.
C.
Josserand
and
S.
Thoroddsen
, “
Drop impact on a solid surface
,”
Annu. Rev. Fluid Mech.
48
,
365
391
(
2016
).
21.
M.
Rein
, “
Phenomena of liquid drop impact on solid and liquid surfaces
,”
Fluid Dyn. Res.
12
,
61
93
(
1993
).
22.
A.
Yarin
, “
Drop impact dynamics: Splashing, spreading, receding, bouncing…
,”
Annu. Rev. Fluid Mech.
38
,
159
192
(
2006
).
23.
A. L.
Yarin
and
D. A.
Weiss
, “
Impact of drops on solid surfaces: Self-similar capillary waves, and splashing as a new type of kinematic discontinuity
,”
J. Fluid Mech.
283
,
141
173
(
1995
).
24.
M.
Rein
, “
The transitional regime between coalescing and splashing drops
,”
J. Fluid Mech.
306
,
145
165
(
1996
).
25.
G. E.
Cossali
,
A.
Coghe
, and
M.
Marengo
, “
The impact of a single drop on a wetted solid surface
,”
Exp. Fluids
22
,
463
472
(
1997
).
26.
A.-B.
Wang
and
C.-C.
Chen
, “
Splashing impact of a single drop onto very thin liquid films
,”
Phys. Fluids
12
,
2155
2158
(
2000
).
27.
C.
Josserand
and
S.
Zaleski
, “
Droplet splashing on a thin liquid film
,”
Phys. Fluids
15
,
1650
1657
(
2003
).
28.
B.
Ray
,
G.
Biswas
, and
A.
Sharma
, “
Regimes during liquid drop impact on a liquid pool
,”
J. Fluid Mech.
768
,
492
523
(
2015
).
29.
D. A.
Weiss
and
A. L.
Yarin
, “
Single drop impact onto liquid films: Neck distortion, jetting, tiny bubble entrainment, and crown formation
,”
J. Fluid Mech.
385
,
229
254
(
1999
).
30.
M.
Rieber
and
A.
Frohn
, “
A numerical study on the mechanism of splashing
,”
Int. J. Heat Fluid Flow
20
,
455
461
(
1999
).
31.
J. U.
Brackbill
,
D. B.
Kothe
, and
C.
Zemach
, “
A continuum method for modeling surface tension
,”
J. Comput. Phys.
100
,
335
354
(
1992
).
32.
C. A.
Schneider
,
W. S.
Rasband
, and
K. W.
Eliceiri
, “
NIH image to ImageJ: 25 years of image analysis
,”
Nat. Methods
9
,
671
675
(
2012
).
33.
S. K.
Das
,
A.
Dalal
,
M.
Breuer
, and
G.
Biswas
, “
Evolution of jets during drop impact on a deep liquid pool
,”
Phys. Fluids
34
,
022110–1
022110–10
(
2022
).
34.
I. V.
Roisman
and
C.
Tropea
, “
Impact of a drop onto a wetted wall: Description of crown formation and propagation
,”
J. Fluid Mech.
472
,
373
397
(
2002
).
35.
O. G.
Engel
, “
Crater depth in fluid impacts
,”
J. Appl. Phys.
37
,
1798
1808
(
1966
).
36.
A.-B.
Wang
,
C.-C.
Chen
, and
W.-C.
Hwang
, “
On some new aspects of splashing impact of drop-liquid surface interactions
,” in
Drop-Surface Interactions
, edited by
M.
Rein
(
Springer Vienna
,
Vienna
,
2002
), pp.
303
306
.
You do not currently have access to this content.