The effects of viscoelasticity on the stability and morphology of the liquid cone in liquid–liquid flow focusing are investigated experimentally and numerically. The particle tracers are utilized in experiments to visualize the flow fields, and the Oldroyd-B model is applied in numerical simulations to describe the viscoelastic characteristics of the liquid cone. Based on the quantitative analyses on the elastic stresses and forces inside the cone, the influence of viscoelasticity on the startup process of the liquid cone is first investigated. The stretching and shrinking stages of the viscoelastic cone are identified, and the startup process of the Newtonian cone is also studied for comparison. By considering the force balance at local jet position, a scaling analysis is proposed to give the criterion for the establishment of the stable cone, which indicates that the axial elastic stress can promote the cone stability. Upon a stable liquid cone, the influences of viscoelasticity on the interface profile and flow field of the cone are further analyzed, indicating that an increase in viscoelasticity leads to more shrinkage of the cone interface. The shrinkage of cone leads to the acceleration of focused liquid and thus the decrease in the recirculation flow size. This fundamental work provides scientific guidance for understanding the influences of viscoelasticity in flow focusing process, contributing to the industrial applications of microdroplets production.

1.
A.
Barrero
and
I. G.
Loscertales
, “
Micro- and nanoparticles via capillary flows
,”
Annu. Rev. Fluid Mech.
39
,
89
106
(
2007
).
2.
A.
Gañán-Calvo
,
J.
Montanero
,
L.
Martín-Banderas
, and
M.
Flores-Mosquera
, “
Building functional materials for health care and pharmacy from microfluidic principles and flow focusing
,”
Adv. Drug Delivery Rev.
65
,
1447
1469
(
2013
).
3.
Z.
Zhu
,
T.
Chen
,
F.
Huang
,
S.
Wang
,
P.
Zhu
,
R.
Xu
, and
T.
Si
, “
Free‐boundary microfluidic platform for advanced materials manufacturing and applications
,”
Adv. Mater.
2023
,
1
37
.
4.
A.
Gañán-Calvo
, “
Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams
,”
Phys. Rev. Lett.
80
,
285
288
(
1998
).
5.
S.
Cleve
,
A.
Lassus
,
C.
Diddens
,
B.
Elburg
,
E.
Gaud
,
S.
Cherkaoui
,
M.
Versluis
,
T.
Segers
, and
G.
Lajoinie
, “
Microbubble formation by flow focusing: Role of gas and liquid properties, and channel geometry
,”
J. Fluid Mech.
972
,
A27
(
2023
).
6.
W.
Zeng
,
B.
Wang
,
H.
Chang
, and
P.
Neužil
, “
Quantitative study of droplet generation by pressure-driven microfluidic flows in a flow-focusing microdroplet generator
,”
Phys. Fluids
36
,
032009
(
2024
).
7.
T.
Si
,
H.
Feng
,
X.
Luo
, and
R.
Xu
, “
Formation of steady compound cone-jet modes and multilayered droplets in a tri-axial capillary flow focusing device
,”
Microfluid. Nanofluid.
18
,
967
(
2015
).
8.
T.
Si
,
C.
Yin
,
P.
Gao
,
G. B.
Li
,
H.
Ding
,
X. M.
He
,
B.
Xie
, and
R.
Xu
, “
Steady cone-jet mode in compound-fluidic electro-flow focusing for fabricating multicompartment microcapsules
,”
Appl. Phys. Lett.
108
,
021601
(
2016
).
9.
K.
Mu
,
R.
Qiao
,
H.
Ding
, and
T.
Si
, “
Modulation of coaxial cone-jet instability in active co-flow focusing
,”
J. Fluid Mech.
977
,
A14
(
2023
).
10.
T.
Si
,
F.
Li
,
X.-Y.
Yin
, and
X.-Z.
YIN
, “
Modes in flow focusing and instability of coaxial liquid–gas jets
,”
J. Fluid Mech.
629
,
1
23
(
2009
).
11.
T.
Si
,
F.
Li
,
X.-Y.
Yin
, and
X.-Z.
Yin
, “
Spatial instability of coflowing liquid-gas jets in capillary flow focusing
,”
Phys. Fluids
22
,
112105
(
2010
).
12.
A.
Gañán-Calvo
and
J.
Gordillo
, “
Perfectly monodisperse microbubbling by capillary flow focusing
,”
Phys. Rev. Lett.
87
,
274501
(
2001
).
13.
J.
Gordillo
,
A.
Gañán-Calvo
, and
M.
Pérez-Saborid
, “
Monodisperse microbubbling: Absolute instabilities in coflowing gas- liquid jets
,”
Phys. Fluids
13
,
3839
3842
(
2001
).
14.
A.
Gañán-Calvo
and
P.
Riesco
, “
Jetting-dripping transition of a liquid jet in a lower viscosity co-flowing immiscible liquid: The minimum flow rate in flow focusing
,”
J. Fluid Mech.
553
,
75
84
(
2006
).
15.
K.
Mu
,
T.
Si
, and
H.
Ding
, “
Nonlinear dynamics and manipulation of dripping in capillary flow focusing
,”
Sci. China Phys. Mech. Astron.
62
,
124713
(
2019
).
16.
J.
Montanero
,
N.
Rebollo-Muñoz
,
M.
Herrada
, and
A.
Gañán-Calvo
, “
Global stability of the focusing effect of fluid jet flows
,”
Phys. Rev. E
83
,
036309
(
2011
).
17.
A.
Utada
,
A.
Fernandez-Nieves
,
H.
Stone
, and
D.
Weitz
, “
Dripping to jetting transitions in coflowing liquid streams
,”
Phys. Rev. Lett.
99
,
094502
(
2007
).
18.
K.
Mu
,
H.
Ding
, and
T.
Si
, “
Instability analysis of the cone–jet flow in liquid-driven flow focusing
,”
Microfluid. Nanofluid.
22
,
138
(
2018
).
19.
M.
Herrada
,
A.
Gañán-Calvo
,
A.
Ojeda-Monge
,
B.
Bluth
, and
P.
Riesco
, “
Liquid flow focused by a gas: Jetting, dripping, and recirculation
,”
Phys. Rev. E
78
,
036323
(
2008
).
20.
A.
Gañán-Calvo
,
C.
Ferrera
,
M.
Torregrosa
,
M.
Herrada
, and
M.
Marchand
, “
Experimental and numerical study of the recirculation flow inside a liquid meniscus focused by air
,”
Microfluid. Nanofluid.
11
,
65
74
(
2011
).
21.
K.
Mu
,
R.
Qiao
,
J.
Guo
,
C.
Yang
,
Y.
Wu
, and
T.
Si
, “
Parametric study on stability and morphology of liquid cone in flow focusing
,”
Int. J. Multiphase Flow
135
,
103507
(
2021
).
22.
A.
Ponce-Torres
,
J.
Montanero
,
E.
Vega
, and
A.
Gañán-Calvo
, “
The production of viscoelastic capillary jets with gaseous flow focusing
,”
J. Non-Newtonian Fluid Mech.
229
,
8
15
(
2016
).
23.
P. T.
Alberto
,
V.
Emilio
,
C. P.
Rafael
, and
M.
Jose
, “
Smooth printing of viscoelastic microfilms with a flow focusing ejector
,”
J. Non-Newtonian Fluid Mech.
249
,
1
7
(
2017
).
24.
A.
Ponce-Torres
,
E.
Ortega
,
M.
Rubio
,
A.
Rubio González
,
E.
Vega
, and
J.
Montanero
, “
Gaseous flow focusing for spinning micro and nanofibers
,”
Polymer
178
,
121623
(
2019
).
25.
R.
Vasireddi
,
J.
Kruse
,
M.
Vakili
,
S.
Kulkarni
,
T.
Keller
,
D.
Monteiro
, and
M.
Trebbin
, “
Solution blow spinning of polymer/nanocomposite micro-/nanofibers with tunable diameters and morphologies using a gas dynamic virtual nozzle
,”
Sci. Rep.
9
,
14297
(
2019
).
26.
R.
Zahoor
,
S.
Bajt
, and
B.
Sarler
, “
A numerical study of gas focused non-Newtonian micro-jets
,”
Int. J. Multiphase Flow
170
,
104628
(
2024
).
27.
R.
Zahoor
,
S.
Bajt
, and
B.
Šarler
, “
Simulation of non-Newtonian gas-focused micro-jets in chocked gas flow regime
,”
J. Phys.
2766
,
012069
(
2024
).
28.
L.
Derzsi
,
M.
Kasprzyk
,
J.
Plog
, and
P.
Garstecki
, “
Flow focusing with viscoelastic liquids
,”
Phys. Fluids
25
,
092001
(
2013
).
29.
A.
Rubio
,
V.
Emilio
,
A.
Gañán-Calvo
, and
J.
Montanero
, “
Unexpected stability of micrometer weakly-viscoelastic jets
,”
Phys. Fluids
34
,
062014
(
2022
).
30.
A.
Rubio
,
F.
Galindo-Rosales
,
E.
Vega
,
J.
Montanero
, and
M.
Cabezas
, “
Viscoelastic transition in transonic flow focusing
,”
Phys. Rev. Fluids
7
,
074201
(
2022
).
31.
V.
Tirtaatmadja
,
G. H.
McKinley
, and
J. J.
Cooper-White
, “
Drop formation and breakup of low viscosity elastic fluids: Effects of molecular weight and concentration
,”
Phys. Fluids
18
,
043101
(
2006
).
32.
D. F.
James
, “
Boger fluids
,”
Annu. Rev. Fluid Mech.
41
,
129
142
(
2009
).
33.
S.
Popinet
, “
A quadtree-adaptive multigrid solver for the Serre–Green–Naghdi equations
,”
J. Comput. Phys.
302
,
336
358
(
2015
).
34.
S.
Popinet
, “
Numerical models of surface tension
,”
Annu. Rev. Fluid Mech.
50
,
49
75
(
2018
).
35.
R.
Fattal
and
R.
Kupferman
, “
Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation
,”
J. Non-Newtonian Fluid Mech.
126
,
23
37
(
2005
).
36.
M.
Alves
,
P.
Oliveira
, and
F.
Pinho
, “
Numerical methods for viscoelastic fluid flows
,”
Annu. Rev. Fluid Mech.
53
,
509
(
2021
).
37.
J.
Hao
and
T. W.
Pan
, “
Simulation for high Weissenberg number: Viscoelastic flow by a finite element method
,”
Appl. Math. Lett.
20
,
988
993
(
2007
).
38.
J.
López-Herrera
,
S.
Popinet
, and
A.
Castrejón-Pita
, “
An adaptive solver for viscoelastic incompressible two-phase problems applied to the study of the splashing of weakly viscoelastic droplets
,”
J. Non-Newtonian Fluid Mech.
264
,
144
158
(
2019
).
39.
Z.
Ding
,
K.
Mu
,
T.
Si
, and
Y.
Jian
, “
Linear instability analysis of a viscoelastic jet in a co-flowing gas stream
,”
J. Fluid Mech.
936
,
A6
(
2022
).
40.
E.
Castro-Hernández
,
V.
Gundabala
,
A.
Fernandez-Nieves
, and
J.
Gordillo
, “
Scaling the drop size in coflow experiments
,”
New J. Phys.
11
,
075021
(
2009
).
You do not currently have access to this content.