We present a variant of the immersed boundary (IB) method that implements acoustic perturbation theory to model acoustically levitated fluid droplets. Instead of resolving sound waves numerically, our hybrid method solves acoustic scattering semi-analytically to obtain the corresponding time-averaged acoustic forces on the droplet. This framework allows the droplet to be simulated on inertial timescales of interest, and therefore works with much larger time steps than traditional compressible flow solvers. To benchmark this technique and demonstrate its utility, we implement the hybrid IB method for a single droplet in a standing wave. Simulated droplet shape deformations and streaming profiles agree with available theoretical predictions. Our simulations also yield insights into the streaming profiles for elliptical droplets, for which a comprehensive analytic solution does not yet exist.

1.
S.
Santesson
and
S.
Nilsson
, “
Airborne chemistry: Acoustic levitation in chemical analysis
,”
Anal. Bioanal. Chem.
378
,
1704
1709
(
2004
).
2.
M. A.
Andrade
,
N.
Pérez
, and
J. C.
Adamowski
, “
Review of progress in acoustic levitation
,”
Braz. J. Phys.
48
,
190
213
(
2018
).
3.
C.
Mu
,
J.
Wang
,
K. M.
Barraza
,
X.
Zhang
, and
J. L.
Beauchamp
, “
Mass spectrometric study of acoustically levitated droplets illuminates molecular-level mechanism of photodynamic therapy for cancer involving lipid oxidation
,”
Angew. Chem. Int. Ed.
58
,
8082
8086
(
2019
).
4.
A.
Marzo
and
B. W.
Drinkwater
, “
Holographic acoustic tweezers
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
84
89
(
2019
).
5.
M. A.
Abdelaziz
,
J.-L.
Aider
,
D. J.
Pine
,
D. G.
Grier
,
M.
Hoyos
et al, “
Ultrasonic chaining of emulsion droplets
,”
Phys. Rev. Res.
3
,
043157
(
2021
).
6.
G. T.
Silva
and
B. W.
Drinkwater
, “
Acoustic radiation force exerted on a small spheroidal rigid particle by a beam of arbitrary wavefront: Examples of traveling and standing plane waves
,”
J. Acoust. Soc. Am.
144
,
EL453
EL459
(
2018
).
7.
J. T.
Karlsen
and
H.
Bruus
, “
Forces acting on a small particle in an acoustical field in a thermoviscous fluid
,”
Phys. Rev. E
92
,
043010
(
2015
).
8.
L.
Wang
,
F.-B.
Tian
, and
J. C.
Lai
, “
An immersed boundary method for fluid–structure–acoustics interactions involving large deformations and complex geometries
,”
J. Fluids Struct.
95
,
102993
(
2020
).
9.
H.
Bruus
, “
Acoustofluidics 7: The acoustic radiation force on small particles
,”
Lab Chip
12
,
1014
1021
(
2012a
).
10.
W. L.
Nyborg
, “
Acoustic streaming near a boundary
,”
J. Acoust. Soc. Am.
30
,
329
339
(
1958
).
11.
Q.
Qi
, “
The effect of compressibility on acoustic streaming near a rigid boundary for a plane traveling wave
,”
J. Acoust. Soc. Am.
94
,
1090
1098
(
1993
).
12.
C. P.
Lee
and
T. G.
Wang
, “
Outer acoustic streaming
,”
J. Acoust. Soc. Am.
88
,
2367
2375
(
1990
).
13.
P. J.
Westervelt
, “
The theory of steady rotational flow generated by a sound field
,”
J. Acoust. Soc. Am.
25
,
60
67
(
1953
).
14.
T.
Baasch
,
A. A.
Doinikov
, and
J.
Dual
, “
Acoustic streaming outside and inside a fluid particle undergoing monopole and dipole oscillations
,”
Phys. Rev. E
101
,
013108
(
2020
).
15.
P. L.
Marston
, “
Shape oscillation and static deformation of drops and bubbles driven by modulated radiation stresses—theory
,”
J. Acoust. Soc. Am.
67
,
15
26
(
1980
).
16.
H.
Bruus
, “
Acoustofluidics 2: Perturbation theory and ultrasound resonance modes
,”
Lab Chip
12
,
20
28
(
2012b
).
17.
F.
Mitri
, “
Axial acoustic radiation force on rigid oblate and prolate spheroids in bessel vortex beams of progressive, standing and quasi-standing waves
,”
Ultrasonics
74
,
62
71
(
2017
).
18.
P.
Waterman
, “
T-matrix methods in acoustic scattering
,”
J. Acoust. Soc. Am.
125
,
42
51
(
2009
).
19.
C. S.
Peskin
, “
Flow patterns around heart valves: A numerical method
,”
J. Comput. Phys.
10
,
252
271
(
1972
).
20.
C. S.
Peskin
, “
The immersed boundary method
,”
Acta Numer.
11
,
479
517
(
2002
).
21.
S.
Maramizonouz
,
M.
Rahmati
,
A.
Link
,
T.
Franke
, and
Y.
Fu
, “
Numerical and experimental studies of acoustic streaming effects on microparticles/droplets in microchannel flow
,”
Int. J. Eng. Sci.
169
,
103563
(
2021
).
22.
Y.
Kim
and
C. S.
Peskin
, “
Penalty immersed boundary method for an elastic boundary with mass
,”
Phys. Fluids
19
,
053103
(
2007
).
23.
Y.
Kim
and
C. S.
Peskin
, “
A penalty immersed boundary method for a rigid body in fluid
,”
Phys. Fluids
28
,
033603
(
2016
).
24.
T. G.
Fai
,
B. E.
Griffith
,
Y.
Mori
, and
C. S.
Peskin
, “
Immersed boundary method for variable viscosity and variable density problems using fast constant-coefficient linear solvers I: Numerical method and results
,”
SIAM J. Sci. Comput.
35
,
B1132
B1161
(
2013
).
25.
Y.
Kim
and
C. S.
Peskin
, “
Numerical study of incompressible fluid dynamics with nonuniform density by the immersed boundary method
,”
Phys. Fluids
20
,
062101
(
2008
).
26.
J.
Happel
and
H.
Brenner
,
Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media
, Vol.
1
(
Springer Science & Business Media
,
1983
).
27.
M.
Settnes
and
H.
Bruus
, “
Forces acting on a small particle in an acoustical field in a viscous fluid
,”
Phys. Rev. E
85
,
016327
(
2012
).
28.
S.
Danilov
and
M.
Mironov
, “
Mean force on a small sphere in a sound field in a viscous fluid
,”
J. Acoust. Soc. Am.
107
,
143
153
(
2000
).
29.
P. J.
Westervelt
, “
Acoustic radiation pressure
,”
J. Acoust. Soc. Am.
29
,
26
29
(
1957
).
30.
G. T.
Silva
, “
An expression for the radiation force exerted by an acoustic beam with arbitrary wavefront (l)
,”
J. Acoust. Soc. Am.
130
,
3541
3544
(
2011
).
31.
W. L. M.
Nyborg
, “
Acoustic streaming
,” in
Physical Acoustics
(
Elsevier
,
1965
), Vol.
2
, pp.
265
331
.
32.
M. A.
Yurkin
and
A. G.
Hoekstra
, “
The discrete dipole approximation: An overview and recent developments
,”
J. Quant. Spectrosc. Radiat. Transfer
106
,
558
589
(
2007
).
33.
F. G.
Mitri
, “
Axisymmetric scattering of an acoustical Bessel beam by a rigid fixed spheroid
,”
IEEE Trans. Ultrason, Ferroelect, Freq. Control
62
,
1809
1818
(
2015
).
34.
L.
Wang
and
F.-B.
Tian
, “
Numerical study of sound generation by three-dimensional flexible flapping wings during hovering flight
,”
J. Fluids Struct.
99
,
103165
(
2020
).
35.
J. H.
Seo
and
R.
Mittal
, “
A high-order immersed boundary method for acoustic wave scattering and low-Mach number flow-induced sound in complex geometries
,”
J. Comput. Phys.
230
,
1000
1019
(
2011
).
36.
E. H.
Trinh
and
C.-J.
Hsu
, “
Equilibrium shapes of acoustically levitated drops
,”
J. Acoust. Soc. Am.
79
,
1335
1338
(
1986
).
37.
H.
Jackson
,
M.
Barmatz
, and
C.
Shipley
, “
Equilibrium shape and location of a liquid drop acoustically positioned in a resonant rectangular chamber
,”
J. Acoust. Soc. Am.
84
,
1845
1862
(
1988
).
38.
P. L.
Marston
,
S. E.
LoPorto-Arione
, and
G. L.
Pullen
, “
Quadrupole projection of the radiation pressure on a compressible sphere
,”
J. Acoust. Soc. Am.
69
,
1499
1501
(
1981
).
39.
J. P.
Leão-Neto
,
J. H.
Lopes
, and
G. T.
Silva
, “
Acoustic radiation torque exerted on a subwavelength spheroidal particle by a traveling and standing plane wave
,”
J. Acoust. Soc. Am.
147
,
2177
2183
(
2020
).
40.
J.
Kim
,
D.
Kim
, and
H.
Choi
, “
An immersed-boundary finite-volume method for simulations of flow in complex geometries
,”
J. Comput. Phys.
171
,
132
150
(
2001
).
41.
R.
Mittal
and
G.
Iaccarino
, “
Immersed boundary methods
,”
Annu. Rev. Fluid Mech.
37
,
239
261
(
2005
).
42.
Y.
Bao
,
A.
Donev
,
B. E.
Griffith
,
D. M.
McQueen
, and
C. S.
Peskin
, “
An immersed boundary method with divergence-free velocity interpolation and force spreading
,”
J. Comput. Phys.
347
,
183
206
(
2017
).
You do not currently have access to this content.