Microfluidic cytometry is an emerging technology for single-cell analysis and offers rich biochemical information about cells. Three-dimensional focusing of cells is a key function for microfluidic cytometry. However, the existing microfluidic chips have fixed geometries and are designed for specific cells, limiting the applicability of microfluidic cytometry. In this work, we develop the ultrastretchable microchannel for size-tunable three-dimensional elasto-inertial focusing of particles and cells. This channel can be modulated by stretching the chip, enabling the focusing of particles and cells with a wide range in sizes. The focusing performance of this ultrastretchable channel is characterized experimentally at different particle sizes, flow rates, polyethylene oxide concentrations, and stretch ratios, showing the great capability in three-dimensional focusing of particles. Finally, the applicability of our ultrastretchable microchannel to biological cells is verified by three-dimensional focusing of yeast cells and fibroblast cells (3T3 cells). The ultrastretchable microchannel is easy for mass production and can be integrated with optical sensing modules for downstream single-cell imaging and analysis.

1.
S.
Yan
and
D.
Yuan
, “
Continuous microfluidic 3D focusing enabling microflow cytometry for single-cell analysis
,”
Talanta
221
,
121401
(
2021
).
2.
N.
Nitta
,
T.
Sugimura
,
A.
Isozaki
,
H.
Mikami
,
K.
Hiraki
,
S.
Sakuma
,
T.
Iino
,
F.
Arai
,
T.
Endo
, and
Y.
Fujiwaki
, “
Intelligent image-activated cell sorting
,”
Cell
175
(
1
),
266
276. e13
(
2018
).
3.
C.
Lei
,
H.
Kobayashi
,
Y.
Wu
,
M.
Li
,
A.
Isozaki
,
A.
Yasumoto
,
H.
Mikami
,
T.
Ito
,
N.
Nitta
, and
T.
Sugimura
, “
High-throughput imaging flow cytometry by optofluidic time-stretch microscopy
,”
Nat. Protoc.
13
(
7
),
1603
(
2018
).
4.
O.
Otto
,
P.
Rosendahl
,
A.
Mietke
,
S.
Golfier
,
C.
Herold
,
D.
Klaue
,
S.
Girardo
,
S.
Pagliara
,
A.
Ekpenyong
, and
A.
Jacobi
, “
Real-time deformability cytometry: On-the-fly cell mechanical phenotyping
,”
Nat. Methods
12
(
3
),
199
202
(
2015
).
5.
H.
Yan
,
Y.
Wu
,
Y.
Zhou
,
M.
Xu
,
P.
Paiè
,
C.
Lei
,
S.
Yan
, and
K.
Goda
, “
Virtual optofluidic time-stretch quantitative phase imaging
,”
APL Photonics
5
(
4
),
046103
(
2020
).
6.
Y.
Feng
,
Z.
Cheng
,
H.
Chai
,
W.
He
,
L.
Huang
, and
W.
Wang
, “
Neural network-enhanced real-time impedance flow cytometry for single-cell intrinsic characterization
,”
Lab Chip
22
(
2
),
240
249
(
2022
).
7.
D.
Di Carlo
,
J. F.
Edd
,
K. J.
Humphry
,
H. A.
Stone
, and
M.
Toner
, “
Particle segregation and dynamics in confined flows
,”
Phys. Rev. Lett.
102
(
9
),
094503
(
2009
).
8.
A. A. S.
Bhagat
,
S. S.
Kuntaegowdanahalli
, and
I.
Papautsky
, “
Inertial microfluidics for continuous particle filtration and extraction
,”
Microfluid. Nanofluid.
7
(
2
),
217
226
(
2009
).
9.
C.
Liu
,
C.
Xue
,
J.
Sun
, and
G.
Hu
, “
A generalized formula for inertial lift on a sphere in microchannels
,”
Lab Chip
16
(
5
),
884
892
(
2016
).
10.
B.
Chun
and
A. J. C.
Ladd
, “
Inertial migration of neutrally buoyant particles in a square duct: An investigation of multiple equilibrium positions
,”
Phys. Fluids
18
(
3
),
031704
(
2006
).
11.
J.
Zhou
and
I.
Papautsky
, “
Fundamentals of inertial focusing in microchannels
,”
Lab Chip
13
(
6
),
1121
1132
(
2013
).
12.
A. M.
Leshansky
,
A.
Bransky
,
N.
Korin
, and
U.
Dinnar
, “
Tunable nonlinear viscoelastic “focusing” in a microfluidic device
,”
Phys. Rev. Lett.
98
(
23
),
234501
(
2007
).
13.
H. Y.
Song
,
S. H.
Lee
,
R.
Salehiyan
, and
K.
Hyun
, “
Relationship between particle focusing and dimensionless numbers in elasto-inertial focusing
,”
Rheol. Acta
55
,
889
900
(
2016
).
14.
H.
Chu
,
I.
Doh
, and
Y.-H.
Cho
, “
A three-dimensional (3D) particle focusing channel using the positive dielectrophoresis (pDEP) guided by a dielectric structure between two planar electrodes
,”
Lab Chip
9
(
5
),
686
691
(
2009
).
15.
Y.
Song
,
X.
Han
,
D.
Li
,
Q.
Liu
, and
D.
Li
, “
Simultaneous and continuous particle separation and counting via localized DC-dielectrophoresis in a microfluidic chip
,”
RSC Adv.
11
(
7
),
3827
3833
(
2021
).
16.
Y.
Sheng
,
Z.
Jun
,
P.
Chao
,
Y.
Dan
,
A.
Gursel
,
D.
Haiping
,
Z.
Yonggang
, and
L.
Weihua
, “
An integrated dielectrophoresis-active hydrophoretic microchip for continuous particle filtration and separation
,”
J. Micromech. Microeng.
25
(
8
),
084010
(
2015
).
17.
S.
Ning
,
S.
Liu
,
Y.
Xiao
,
G.
Zhang
,
W.
Cui
, and
M.
Reed
, “
A microfluidic chip with a serpentine channel enabling high-throughput cell separation using surface acoustic waves
,”
Lab Chip
21
(
23
),
4608
4617
(
2021
).
18.
S.
Yan
,
J.
Zhang
,
D.
Yuan
,
Q.
Zhao
,
J.
Ma
, and
W.
Li
, “
High-throughput, sheathless, magnetophoretic separation of magnetic and non-magnetic particles with a groove-based channel
,”
Appl. Phys. Lett.
109
(
21
),
214101
(
2016
).
19.
P.
Su
,
C.
Ren
,
Y.
Fu
,
J.
Guo
,
J.
Guo
, and
Q.
Yuan
, “
Magnetophoresis in microfluidic lab: Recent advance
,”
Sens. Actuators, A
332
,
113180
(
2021
).
20.
Z.
Chen
,
B.
Chen
,
M.
He
, and
B.
Hu
, “
Negative magnetophoresis focusing microchips online-coupled with ICP–MS for high-throughput single-cell analysis
,”
Anal. Chem.
94
(
18
),
6649
6656
(
2022
).
21.
P.
Paiè
,
F.
Bragheri
,
R. M.
Vazquez
, and
R.
Osellame
, “
Straightforward 3D hydrodynamic focusing in femtosecond laser fabricated microfluidic channels
,”
Lab Chip
14
(
11
),
1826
1833
(
2014
).
22.
W.
Tang
,
N.
Fan
,
J.
Yang
,
Z.
Li
,
L.
Zhu
,
D.
Jiang
,
J.
Shi
, and
N.
Xiang
, “
Elasto-inertial particle focusing in 3D-printed microchannels with unconventional cross sections
,”
Microfluid. Nanofluid.
23
(
3
),
42
(
2019
).
23.
D.
Di Carlo
, “
Inertial microfluidics
,”
Lab Chip
9
(
21
),
3038
3046
(
2009
).
24.
J.
Zhang
,
S.
Yan
,
D.
Yuan
,
G.
Alici
,
N.-T.
Nguyen
,
M. E.
Warkiani
, and
W.
Li
, “
Fundamentals and applications of inertial microfluidics: A review
,”
Lab Chip
16
(
1
),
10
34
(
2016
).
25.
A. J.
Chung
,
D. R.
Gossett
, and
D.
Di Carlo
, “
Three dimensional, sheathless, and high-throughput microparticle inertial focusing through geometry-induced secondary flows
,”
Small
9
(
5
),
685
690
(
2013
).
26.
C.
Ni
,
Z.
Zhou
,
Z.
Zhu
,
D.
Jiang
, and
N.
Xiang
, “
Controllable size-independent three-dimensional inertial focusing in high-aspect-ratio asymmetric serpentine microchannels
,”
Anal. Chem.
94
(
45
),
15639
15647
(
2022
).
27.
S.
Yang
,
J. Y.
Kim
,
S. J.
Lee
,
S. S.
Lee
, and
J. M.
Kim
, “
Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel
,”
Lab Chip
11
(
2
),
266
273
(
2011
).
28.
N.
Xiang
,
X.
Zhang
,
Q.
Dai
,
J.
Cheng
,
K.
Chen
, and
Z.
Ni
, “
Fundamentals of elasto-inertial particle focusing in curved microfluidic channels
,”
Lab Chip
16
(
14
),
2626
2635
(
2016
).
29.
Y.
Zhou
,
Z.
Ma
, and
Y.
Ai
, “
Dynamically tunable elasto-inertial particle focusing and sorting in microfluidics
,”
Lab Chip
20
(
3
),
568
581
(
2020
).
30.
J.-J.
Bai
,
X.
Zhang
,
X.
Wei
,
Y.
Wang
,
C.
Du
,
Z.-J.
Wang
,
M.-L.
Chen
, and
J.-H.
Wang
, “
Dean-flow-coupled elasto-inertial focusing accelerates exosome purification to facilitate single vesicle profiling
,”
Anal. Chem.
95
(
4
),
2523
2531
(
2023
).
31.
T.
Suzuki
,
S.
Kalyan
,
C.
Berlinicke
,
S.
Yoseph
,
D. J.
Zack
, and
S. C.
Hur
, “
Deciphering viscoelastic cell manipulation in rectangular microchannels
,”
Phys. Fluids
35
(
10
),
103117
(
2023
).
32.
B. P.
Ho
and
L. G.
Leal
, “
Inertial migration of rigid spheres in two-dimensional unidirectional flows
,”
J. Fluid Mech.
65
(
2
),
365
400
(
1974
).
33.
J.
Zhou
and
I.
Papautsky
, “
Viscoelastic microfluidics: Progress and challenges
,”
Microsyst. Nanoeng.
6
,
113
(
2020
).
34.
Z.
Jia
,
J.
Wu
,
X.
Wu
,
Q.
Yuan
,
Y.
Chan
,
B.
Liu
,
J.
Zhang
, and
S.
Yan
, “
Size-tunable elasto-inertial sorting of Haematococcus pluvialis in the ultrastretchable microchannel
,”
Anal. Chem.
95
(
35
),
13338
13345
(
2023
).
35.
H.
Fallahi
,
J.
Zhang
,
J.
Nicholls
,
H. P.
Phan
, and
N. T.
Nguyen
, “
Stretchable inertial microfluidic device for tunable particle separation
,”
Anal. Chem.
92
(
18
),
12473
12480
(
2020
).
36.
H.
Fallahi
,
S.
Yadav
,
H. P.
Phan
,
H.
Ta
,
J.
Zhang
, and
N. T.
Nguyen
, “
Size-tuneable isolation of cancer cells using stretchable inertial microfluidics
,”
Lab Chip
21
(
10
),
2008
2018
(
2021
).
37.
Z.
Lu
,
J.
Song
,
K.
Pan
,
J.
Meng
,
Z.
Xin
,
Y.
Liu
,
Z.
Zhao
,
R. H.
Gong
, and
J.
Li
, “
EcoFlex sponge with ultrahigh oil absorption capacity
,”
ACS Appl. Mater. Interfaces
11
(
22
),
20037
20044
(
2019
).
38.
M. I.
Bahlouli
,
K.
Bekkour
,
A.
Benchabane
,
Y.
Hemar
, and
A.
Nemdili
, “
The effect of temperature on the rheological behavior of polyethylene oxide (PEO) solutions
,”
Appl. Rheol.
23
(
1
),
13435
(
2013
).
39.
G.
D'Avino
,
G.
Romeo
,
M. M.
Villone
,
F.
Greco
,
P. A.
Netti
, and
P. L.
Maffettone
, “
Single line particle focusing induced by viscoelasticity of the suspending liquid: Theory, experiments and simulations to design a micropipe flow-focuser
,”
Lab Chip
12
(
9
),
1638
1645
(
2012
).
40.
X.
Salas-Barzola
,
G.
Maîtrejean
,
C.
de Loubens
,
A.
Naillon
,
E. S.
Carreras
, and
H.
Bodiguel
, “
Reversal of particle migration for viscoelastic solution at high solvent viscosity
,”
J. Non-Newtonian Fluid Mech.
329
,
105234
(
2024
).
41.
J. P.
Beech
and
J. O.
Tegenfeldt
, “
Tuneable separation in elastomeric microfluidics devices
,”
Lab Chip
8
(
5
),
657
659
(
2008
).
42.
J.
Alvankarian
and
B. Y.
Majlis
, “
A technique of optimization of microfiltration using a tunable platform
,”
J. Micromech. Microeng.
25
(
8
),
084011
(
2015
).
43.
H.
Fallahi
,
J.
Zhang
,
H.-P.
Phan
, and
N.-T.
Nguyen
, “
Flexible microfluidics: Fundamentals, recent developments, and applications
,”
Micromachines
10
(
12
),
830
(
2019
).
44.
K.
Ghoshal
,
S.
Chakraborty
,
C.
Das
,
S.
Chattopadhyay
,
S.
Chowdhury
, and
M.
Bhattacharyya
, “
Dielectric properties of plasma membrane: A signature for dyslipidemia in diabetes mellitus
,”
Arch. Biochem. Biophys.
635
,
27
36
(
2017
).
45.
S.
Chakraborty
,
C.
Das
,
R.
Saha
,
A.
Karmakar
,
S.
Chattopadhyay
,
S.
Das
,
R.
Mishra
, and
R.
Mishra
, “
Bio-dielectric variation as a signature of shape alteration and lysis of human erythrocytes: an on-chip analysis
,” in
International Symposium on Devices, Circuits and Systems (ISDCS), Howrah, India
(
IEEE
,
2018
), pp
1
4
.
You do not currently have access to this content.