This paper presents a newly designed non-mechanical electro-conjugate fluid (ECF) micropump with a Venturi-shaped collector and teardrop-shaped emitter (VD-ECF micropump). The numerical model using the finite element method was thoroughly validated by comparing it with both experimental data and numerical results. Consequently, the characteristic curves of the VD-ECF micropump are significantly affected by both the emitter angle (θ1) and the collector angle (θ2). The effects of these angles on the flow behaviors in a VD-ECF micropump were first explained. Furthermore, the performance characteristic curves were elaborately constructed for various operating conditions. The operating ranges of pressure difference and flow rate of the VD-ECF micropump are extended, and they peak at θ2 approximately from 25° to 30°. Additionally, the maximum efficiency reaches up to 10%, which is the highest figure recorded to date. The obtained results for the new VD-ECF micropump would significantly contribute to the development of ECF micropumps with precise control. Our work also gives valuable guidelines for designing and manufacturing processes of this type of micropump, which has potential applications in microelectronic cooling systems, micro-actuators, and drug transport mechanisms in medical and biomedical fields.

1.
S.
Mi
,
H.
Pu
,
S.
Xia
, and
W.
Sun
, “
A minimized valveless electromagnetic micropump for microfluidic actuation on organ chips
,”
Sens. Actuators A: Phys.
301
,
111704
(
2020
).
2.
C. K.
Byun
,
K.
Abi-Samra
,
Y. K.
Cho
, and
S.
Takayama
, “
Pumps for microfluidic cell culture
,”
Electrophoresis
35
,
245
(
2014
).
3.
M.
Sedky
,
A.
Ali
,
M.
Abdel-Mottaleb
, and
M.
Serry
, “
A new rapid-release SMA-activated micropump with incorporated microneedle arrays and polymeric nanoparticles for optimized transdermal drug delivery
,”
Sens. Actuators B: Chem.
408
,
135549
(
2024
).
4.
Y.-N.
Wang
and
L.-M.
Fu
, “
Micropumps and biomedical applications—A review
,”
Microelectron. Eng.
195
,
121
(
2018
).
5.
X.-L.
Gao
,
X.-D.
Bao
,
S.-J.
Pang
,
J.
Wu
,
K.
Luo
, and
H.-L.
Yi
, “
The electrohydrodynamic enhancement of heat transfer on interdigitated electrodes by a charge injection pump
,”
Phys. Fluids
36
,
033612
(
2024
).
6.
P. K.
Das
and
A. B. M. T.
Hasan
,
Mechanical Micropumps and Their Applications: A Review
(
AIP Conference Proceedings
,
2017
).
7.
X.
Luo
,
L.
Yang
, and
Y.
Cui
, “
Micropumps: Mechanisms, fabrication, and biomedical applications
,”
Sens. Actuators A: Phys.
363
,
114732
(
2023
).
8.
J.-w.
Kim
,
T.
Suzuki
,
S.
Yokota
, and
K.
Edamura
, “
Tube-type micropump by using electro-conjugated fluid (ECF)
,”
Sens. Actuators A: Phys.
174
,
155
(
2012
).
9.
Y.
Kuroboshi
,
K.
Takemura
, and
K.
Edamura
, “
Understanding of electro-conjugate fluid flow with dibutyl decanedioate using numerical simulation—Calculating ion mobility using molecular dynamics simulation
,”
Sens. Actuators B: Chem.
255
,
448
(
2018
).
10.
Y.
Abe
,
K.
Takemura
,
K.
Sato
,
S.
Yokota
, and
K.
Edamura
, “
Droplet μTAS using electro-conjugate fluid—Feedback position control of multiple droplets in flow channel matrix
,”
Sens. Actuators A: Phys.
198
,
1
(
2013
).
11.
Z.
Mao
,
K.
Yoshida
, and
J.-w.
Kim
, “
Developing O/O (oil-in-oil) droplet generators on a chip by using ECF (electro-conjugate fluid) micropumps
,”
Sens. Actuators B: Chem.
296
,
126669
(
2019
).
12.
S.
Yokota
,
A.
Sadamoto
,
Y.
Kondoh
,
Y.
Otsubo
, and
K.
Edamura
, “
A micro motor using electroconjugate fluids (ECFs)
,”
JSME Int. J. Ser. C
44
,
756
(
2001
).
13.
F.
Abhari
,
H.
Jaafar
, and
N. A. M.
Yunus
, “
A comprehensive study of micropumps technologies
,”
Int. J. Electrochem. Sci.
7
,
9765
(
2012
).
14.
K.
Takemura
,
S.
Yokota
, and
K.
Edamura
, “
Development and control of a micro artificial muscle cell using electro-conjugate fluid
,”
Sens. Actuators A: Phys.
133
,
493
(
2007
).
15.
K.
Mori
,
A.
Yamaguchi
,
K.
Takemura
,
S.
Yokota
, and
K.
Edamura
, “
Control of a novel flexible finger using electro-conjugate fluid with built-in angle sensor
,”
Sens. Actuators A: Phys.
183
,
75
(
2012
).
16.
S.
Ueno
,
K.
Takemura
,
S.
Yokota
, and
K.
Edamura
, “
Micro inchworm robot using electro-conjugate fluid
,”
Sens. Actuators A: Phys.
216
,
36
(
2014
).
17.
K.
Takemura
,
S.
Yokota
,
M.
Suzuki
,
K.
Edamura
,
H.
Kumagai
, and
T.
Imamura
, “
A liquid rate gyroscope using electro-conjugate fluid
,”
Sens. Actuators A: Phys.
149
,
173
(
2009
).
18.
S.
Yokota
,
W. S.
Seo
,
K.
Yoshida
, and
K.
Edamura
, “
A thin-planar pump using electro-conjugate fluid (ECF) for liquid cooling of electronic chips
,”
Trans. Jpn. Soc. Mech. Eng. C
71
(709),
2798
2804
(
2005
).
19.
L.
Cao
,
S.
Mantell
, and
D.
Polla
, “
Design and simulation of an implantable medical drug delivery system using microelectromechanical systems technology
,”
Sens. Actuators A: Phys.
94
,
117
(
2001
).
20.
D.
Han
,
H.
Wang
,
S.
Yokota
, and
J.-W.
Kim
, “
Configurations of triangular prism and slit electrode pairs to enhance the performance of electro-conjugate fluid micropumps
,”
J. Micromech. Microeng.
30
,
025007
(
2020
).
21.
Y.
Kuroboshi
,
K.
Takemura
, and
K.
Edamura
, “
Efficient electrode configuration for electro-conjugate fluid flow generation with dibutyl decanedioate: Experimental and theoretical investigation
,”
Sens. Actuators A: Phys.
279
,
223
(
2018
).
22.
I. L.
Ngo
,
T. K.
Lai
,
H. J.
Choi
,
H. T. T.
Le
,
G. M.
Kim
, and
T. D.
Dang
, “
A study on mixing performance of dean flows through spiral micro-channel under various effects
,”
Phys. Fluids
32
,
022004
(
2020
).
23.
K.
Mori
,
H.
Yamamoto
,
K.
Takemura
,
S.
Yokota
, and
K.
Edamura
, “
Dominant factors inducing electro-conjugate fluid flow
,”
Sens. Actuators A: Phys.
167
,
84
(
2011
).
24.
Y.
Iijima
,
K.
Hosoda
,
K.
Takemura
,
K.
Fukagata
, and
K.
Edamura
, “
Numerical simulation of electro-conjugate fluid flow considering electric double layer
,”
Mech. Eng. J.
2
,
15-00341
(
2015
).
25.
J.-w.
Kim
,
Y.
Tanabe
, and
S.
Yokota
, “
Comprehending electro-conjugate fluid (ECF) jets by using the Onsager effect
,”
Sens. Actuators A: Phys.
295
,
266
(
2019
).
26.
R.
Abe
,
K.
Takemura
,
K.
Edamura
, and
S.
Yokota
, “
Concept of a micro finger using electro-conjugate fluid and fabrication of a large model prototype
,”
Sens. Actuators A: Phys.
136
,
629
(
2007
).
27.
H.
Yamamoto
,
K.
Mori
,
K.
Takemura
,
L.
Yeo
,
J.
Friend
,
S.
Yokota
, and
K.
Edamura
, “
Numerical modeling of electro-conjugate fluid flows
,”
Sens. Actuators A: Phys.
161
,
152
(
2010
).
28.
T.
Matsubara
,
H. H.
Huynh
,
K.
Yoshida
, and
J.-w.
Kim
, “
Development of MEMS-fabricated bidirectional ECF (electro-conjugate fluid) micropumps
,”
Sens. Actuators A: Phys.
295
,
317
(
2019
).
29.
J.-w.
Kim
,
Y.
Yamada
, and
S.
Yokota
, “
Micro ECF (electro-conjugate fluid) hydraulic power sources based on the modular design of TPSEs (triangular prism and slit electrode pairs)
,”
Int. J. Adv. Manuf. Technol.
106
,
627
(
2019
).
30.
A.
Manz
,
C. S.
Effenhauser
,
N.
Burggraf
,
D. J.
Harrison
,
K.
Seiler
, and
K.
Fluri
, “
Electroosmotic pumping and electrophoretic separations for miniaturized chemical analysis systems
,”
J. Micromech. Microeng.
4
,
257
(
1994
).
31.
K. D.
Tran
,
Y.
Kojima
, and
H.
Yanada
, “
Measurement and numerical simulation of flow and electric fields in charge injection type of electrostatic oil filter
,”
JFPS Int. J. Fluid Power Syst.
2
,
1
(
2009
).
32.
H.
Yanada
,
T.
Yamada
,
Y.
Asai
, and
Y.
Terashita
, “
Measurement and numerical simulation of ion drag pump characteristics
,”
J. Fluid Sci. Technol.
5
,
617
(
2010
).
33.
M.
Nishikawara
,
M.
Shimada
,
M.
Saigo
, and
H.
Yanada
, “
Numerical investigation of the characteristics of an ion drag pump
,”
J. Electrost.
84
,
23
(
2016
).
34.
T. K.
Lai
,
K. D.
Tran
, and
I. L.
Ngo
,
A Numerical Study on the Thermo-Electrohydrodynamic Performance of ECF Micro-Pumps
(
Springer
,
Hanoi, Vietnam
,
2024
).
35.
F. M.
White
,
Fluid Mechanics
, 4th ed. (
McGraw Hill Publishing Company Ltd
.,
2001
).
36.
Y. A.
Çengel
and
J. M.
Cimbala
,
Fluid Mechanics: Fundamentals and Applications
(
McGraw-Hill Higher Education
,
2010
).
37.
I.
Kano
and
T.
Nishina
, “
Effect of electrode arrangements on EHD conduction pumping
,”
IEEE Trans. Ind. Appl.
49
,
679
(
2013
).
38.
Y.
Peng
,
D.
Li
,
X.
Yang
,
Z.
Ma
, and
Z.
Mao
, “
A review on electrohydrodynamic (EHD) pump
,”
Micromachines
14
,
321
(
2023
).
39.
D.
Han
,
H.
Gu
,
J.-w.
Kim
, and
S.
Yokota
, “
A bio-inspired 3D-printed hybrid finger with integrated ECF (electro-conjugate fluid) micropumps
,”
Sens. Actuators A: Phys.
257
,
47
(
2017
).
40.
H.
Soğukpinar
, “
Numerical simulation of 4-digit inclined naca 00xx airfoils to find optimum angle of attack for airplane wing
,”
Uludag Univ. J. Faculty Eng.
22
,
169
(
2017
).
41.
H.
Yanada
,
S.
Hakama
,
T.
Miyashita
, and
N.
Zhang
, “
An investigation of an ion drag pump using a needle–mesh electrode configuration
,”
Proc. Inst. Mech. Eng., C: J. Mech. Eng. Sci.
216
,
325
(
2002
).
42.
T. T.
Nguyen
,
M.
Pham
, and
N. S.
Goo
, “
Development of a peristaltic micropump for bio-medical applications based on mini LIPCA
,”
J. Bionic Eng.
5
,
135
(
2008
).
You do not currently have access to this content.