A theoretical and numerical investigation of electrokinetic flow is performed in a nanochannel with the charged symmetric corrugated surfaces. The perturbation and numerical solutions of electrokinetic flow variables are given, and the effects of corrugation geometry, such as wave amplitude and wave number, on the electrokinetic flow characteristics are systematically examined. The results show that the electrokinetic flow recirculation may occur easily at wave crest due to the electroviscous effect. The velocity profile is strongly dependent on wave number, but the maximum or minimum velocity may be insusceptible to wave number. Furthermore, the distributions of streaming potential and energy conversion efficiency are also investigated. We find that, for some special geometry of corrugations, the streaming current and conversion efficiency obtained from the present corrugated nanochannel are higher than that from the smooth nanochannel. Specially, when the dimensionless wave number is 0.5/π, the magnitude of streaming potential is enhanced about 29% at δ = 0.5 and the peak value of conversion efficiency is enhanced about 2% at δ = 0.1. We believe that the optimal corrugation geometry parameters can be of benefit in designing a microfluidic device with higher streaming current and conversion efficiency.

1.
W.
Han
and
X.
Chen
, “
A review: Applications of ion transport in micro‐nanofluidic systems based on ion concentration polarization
,”
J. Chem. Technol. Biotechnol.
95
(
6
),
1622
1631
(
2020
).
2.
B.
Kumar
,
S.
Jangili
, and
J. V.
Ramana Murthy
, “
Theoretical investigation of electromagnetohydrodynamic flow of a couple stress fluid through a circular microchannel
,”
Pramana
97
(
4
),
191
202
(
2023
).
3.
T.
Siva
,
B.
Kumbhakar
,
S.
Jangili
, and
P. K.
Mondal
, “
Unsteady electro-osmotic flow of couple stress fluid in a rotating microchannel: An analytical solution
,”
Phys. Fluids
32
(
10
),
102013
(
2020
).
4.
X. M.
Chen
,
S.
Liu
,
X. G.
Hu
,
T. T.
Liu
,
M.
Shen
,
Y.
Peng
,
S.
Hu
, and
Y.
Zhao
, “
Enrichment and selection of particles through parallel induced-charge electro-osmotic streaming for detection of low-abundance nanoparticles and targeted microalgae
,”
Anal. Chem.
95
(
31
),
11714
11722
(
2023
).
5.
G. E.
Karniadakis
,
A.
Beskok
, and
N.
Aluru
,
Microflows and Nanoflows: Fundamentals and Simulation
(
Springer
,
New York
,
2005
).
6.
J. H.
Masliyah
and
S.
Bhattacharhee
,
Electrokinetic and Colloid Transport Phenomena
(
John Wiley & Sons, Inc
.,
2006
).
7.
D.
Subudhi
,
S.
Jangili
, and
S.
Barik
, “
Unsteady solute dispersion of electro-osmotic flow of micropolar fluid in a rectangular microchannel
,”
Phys. Fluids
36
(
7
),
073114
(
2024
).
8.
F. H. J.
Van der Heyden
,
D.
Stein
, and
C.
Dekker
, “
Streaming currents in a single nano-fluidic channel
,”
Phys. Rev. Lett.
95
(
11
),
116104
(
2005
).
9.
L. J.
Mei
,
L. H.
Yeh
, and
S. Z.
Qian
, “
Buffer anions can enormously enhance the electrokinetic energy conversion in nanofluidics with highly overlapped double layers
,”
Nano Energy
32
,
374
381
(
2017
).
10.
N.
Vasu
and
S.
De
, “
Electroviscous effects in purely pressure driven flow and stationary plane analysis in electroosmotic flow of power-law fluids in a slit microchannel
,”
Int. J. Eng. Sci.
48
(
11
),
1641
1658
(
2010
).
11.
S.
Chanda
,
S.
Sinha
, and
S.
Das
, “
Streaming potential and electroviscous effects in soft nanochannels: Towards designing more efficient nanofluidic electrochemomechanical energy converters
,”
Soft Matter
10
(
38
),
7558
7568
(
2014
).
12.
X.
Xuan
, “
Streaming potential and electroviscous effect in heterogeneous microchannels
,”
Microfluid. Nanofluid.
4
(
5
),
457
462
(
2008
).
13.
S.
Sarkar
, “
Streaming-potential-mediated pressure-driven transport of Phan-Thien–Tanner fluids in a microchannel
,”
Phys. Rev. E
101
(
5
),
053104
(
2020
).
14.
D.
Banerjee
,
S.
Pati
, and
P.
Biswas
, “
Analysis of electroviscous effect and heat transfer for flow of non-Newtonian fluids in a microchannel with surface charge-dependent slip at high zeta potentials
,”
Phys. Fluids
34
,
112016
(
2022
).
15.
X. Y.
Chen
,
Y. J.
Jian
, and
Z. Y.
Xie
, “
Electrokinetic flow of fluids with pressuredependent viscosity in a nanotube
,”
Phys. Fluids
33
,
122002
(
2021
).
16.
Z. Y.
Xie
,
Y. J.
Jian
, and
X. Y.
Chen
, “
Electrokinetic energy conversion of high pressure-driven flow with pressure-viscosity effect at high zeta potential
,”
Int. J. Eng. Sci.
184
,
103819
(
2023
).
17.
X. Y.
Chen
,
Z. Y.
Xie
, and
Y. J.
Jian
, “
Streaming potential of viscoelastic fluids with the pressure-dependent viscosity in nanochannel
,”
Phys. Fluids
36
,
032025
(
2024
).
18.
J.
Patwary
,
G.
Chen
, and
S.
Das
, “
Efficient electrochemomechanical energy conversion in nanochannels grafted with polyelectrolyte layers with pH-dependent charge density
,”
Microfluid. Nanofluid.
20
,
37
51
(
2016
).
19.
Z. D.
Ding
and
Y. J.
Jian
, “
Electrokinetic oscillatory flow and energy conversion of viscoelastic fluids in microchannels: A linear analysis
,”
J. Fluid Mech.
919
,
A20
(
2021
).
20.
F. H. J.
van der Heyden
,
D. J.
Bonthuis
,
D.
Stein
,
C.
Meyer
, and
C.
Dekker
, “
Electrokinetic energy conversion efficiency in nanofluidic channels
,”
Nano Lett.
6
(
10
),
2232
2237
(
2006
).
21.
F. H. J.
van der Heyden
,
D. J.
Bonthuis
,
D.
Stein
,
C.
Meyer
, and
C.
Dekker
, “
Power generation by pressure-driven transport of ions in nanofluidic channels
,”
Nano Lett.
7
(
4
),
1022
1025
(
2007
).
22.
Y.
Ren
and
D.
Stein
, “
Slip-enhanced electrokinetic energy conversion in nanofluidic channels
,”
Nanotechnology
19
(
19
),
195707
(
2008
).
23.
P.
Goswami
and
S.
Chakraborty
, “
Energy transfer through streaming effects in time periodic pressure-driven nanochannel flows with interfacial slip
,”
Langmuir
26
(
1
),
581
590
(
2010
).
24.
B.
Kumar
and
S.
Jangili
, “
Investigation of heat transfer and electrokinetic energy conversion efficiency on electromagnetohydrodynamic flow of couple stress fluid through a circular microchannel
,”
Int. Commun. Heat Mass Transfer
155
,
107381
(
2024
).
25.
Y. J.
Jian
,
F. Q.
Li
,
Y. B.
Liu
,
L.
Chang
,
Q. S.
Liu
, and
L. G.
Yang
, “
Electrokinetic energy conversion efficiency of viscoelastic fluids in a polyelectrolyte-grafted nanochannel
,”
Colloid Surf., B
156
,
405
413
(
2017
).
26.
J. L.
Zhang
,
G. P.
Zhao
,
X.
Gao
,
N.
Li
, and
Y. J.
Jian
, “
Streaming potential and electrokinetic energy conversion of nanofluids in a parallel plate microchannel under the time-periodic excitation
,”
Chin. J. Phys.
75
,
55
68
(
2022
).
27.
G. P.
Zhao
,
J. L.
Zhang
,
Z. Q.
Wang
, and
Y. J.
Jian
, “
Electrokinetic energy conversion of electro-magneto-hydro-dynamic nanofluids through a microannulus under the time-periodic excitation
,”
Appl. Math. Mech.
42
(
7
),
1029
1046
(
2021
).
28.
Z. Y.
Xie
,
Y. J.
Jian
, and
W. C.
Tan
, “
Streaming potential analysis and electrokinetic energy conversion efficiency of two immiscible fluids in a nanochannel
,”
Sens. Actuators, B
273
,
1257
1268
(
2018
).
29.
Z. D.
Ding
,
Y. J.
Jian
, and
W. C.
Tan
, “
Electrokinetic energy conversion of two-layer fluids through nanofluidic channels
,”
J. Fluid Mech.
863
,
1062
1090
(
2019
).
30.
Y. B.
Liu
,
J. N.
Xing
, and
J. D.
Pi
, “
Surface charge mobility modulated electrokinetic energy conversion in graphene nanochannels
,”
Phys. Fluids
34
,
112018
(
2022
).
31.
Z. Y.
Xie
and
Y. J.
Jian
, “
Electrokinetic energy conversion of power-law fluids in a slit nanochannel beyond Debye-Hückel linearization
,”
Energy
252
,
124029
(
2022
).
32.
H. M.
Park
and
H. D.
Lee
, “
Effects of wall roughness and velocity slip on streaming potential of microchannels
,”
Int. J. Heat Mass Transfer
55
(
11–12
),
3295
3306
(
2012
).
33.
J. C.
Lei
,
C. C.
Chang
, and
C. Y.
Wang
, “
Electroosmotic pumping through a bumpy microtube: Boundary perturbation and detection of roughness
,”
Phys. Fluids
31
,
012001
(
2019
).
34.
M.
Javed
,
R.
Aslam
, and
N.
Ibrahim
, “
Peristaltic mechanism in a micro wavy channel
,”
Therm. Sci. Eng. Prog.
38
,
101530
(
2023
).
35.
C. O.
Ng
and
C. Y.
Wang
, “
Darcy–Brinkman flow through a corrugated channel
,”
Transp. Porous Med.
85
,
605
618
(
2010
).
36.
M.
Buren
and
Y. J.
Jian
, “
Electromagnetohydrodynamic (EMHD) flow between two transversely wavy microparallel plates
,”
Electrophoresis
36
(
14
),
1539
1548
(
2015
).
37.
M.
Buren
,
Y. J.
Jian
,
L.
Chang
,
Q. S.
Liu
, and
G. P.
Zhao
, “
AC magnetohydrodynamic slip flow in microchannel with sinusoidal roughness
,”
Microsyst. Technol.
23
,
3347
3359
(
2017
).
38.
M.
Buren
,
Y. J.
Jian
,
L.
Chang
,
F. Q.
Li
, and
Q. S.
Liu
, “
Combined electromagnetohydrodynamic flow in a microparallel channel with slightly corrugated walls
,”
Fluid Dyn. Res.
49
(
2
),
025517
(
2017
).
39.
L.
Martínez
,
O.
Bautista
,
J.
Escandón
, and
F.
Méndez
, “
Electroosmotic flow of a Phan-Thien-Tanner fluid in a wavy-wall microchannel
,”
Colloid Surf., A
498
,
7
19
(
2016
).
40.
C. C.
Cho
and
C. L.
Chen
, “
Characteristics of combined electroosmotic flow and pressure-driven flow in microchannels with complex-wavy surfaces
,”
Int. J. Therm. Sci.
61
,
94
105
(
2012
).
41.
A.
Banerjee
and
A. K.
Nayak
, “
Influence of varying zeta potential on non-Newtonian flow mixing in a wavy patterned microchannel
,”
J. Non-Newtonian Fluid Mech.
269
,
17
27
(
2019
).
42.
C. Z.
Li
,
Z. Q.
Li
,
Z.
Zhang
,
N.
Qiao
, and
M. Z.
Liao
, “
Salinity gradient power generation in sinusoidal nanochannels
,”
Phys. Fluids
36
,
022007
(
2024
).
43.
Z. Y.
Xie
, “
Electrokinetic energy conversion of core-annular flow in a slippery nanotube
,”
Colloid Surf., A
642
,
128723
(
2022
).
You do not currently have access to this content.