Bulk nanobubbles, nanoscopic gaseous domains in aqueous solutions, exhibit surprising long-term stability and unique properties under varying environmental conditions. This study investigates the effects of external pressure on nanobubble stability and behavior through three experimental setups: pressurization at room temperature, pressurization at elevated temperatures, and constant pressure loading. Our findings reveal that increasing external pressure reduces nanobubble concentration and reshapes the bubble size distribution. Larger nanobubbles either disappeared or transformed into microbubbles, while smaller ones expanded, significantly narrowing the size distribution. These changes were found to be irreversible. Additionally, nanobubble stability is influenced by both the magnitude and duration of the applied pressure. Elevated temperatures further narrowed the size distribution at atmospheric pressure, and subsequent pressurization caused these nanobubbles to shrink, showing different response characteristics compared to room temperature. This research highlights the complex interplay between pressure, temperature, and nanobubble stability, offering valuable insight for practical applications in fields such as drug delivery, water treatment, and nanomaterial synthesis.

1.
M.
Alheshibri
,
J.
Qian
,
M.
Jehannin
, and
V. S.
Craig
, “
A history of nanobubbles
,”
Langmuir
32
,
11086
11100
(
2016
).
2.
A.
Agarwal
,
W. J.
Ng
, and
Y.
Liu
, “
Principle and applications of microbubble and nanobubble technology for water treatment
,”
Chemosphere
84
,
1175
1180
(
2011
).
3.
J.
Zhu
,
H.
An
,
M.
Alheshibri
,
L.
Liu
,
P. M.
Terpstra
,
G.
Liu
, and
V. S.
Craig
, “
Cleaning with bulk nanobubbles
,”
Langmuir
32
,
11203
11211
(
2016
).
4.
T.
Temesgen
,
T. T.
Bui
,
M.
Han
,
T.-i.
Kim
, and
H.
Park
, “
Micro and nanobubble technologies as a new horizon for water-treatment techniques: A review
,”
Adv. Colloid Interface Sci.
246
,
40
51
(
2017
).
5.
A.
Azevedo
,
H.
Oliveira
, and
J.
Rubio
, “
Bulk nanobubbles in the mineral and environmental areas: Updating research and applications
,”
Adv. Colloid Interface Sci.
271
,
101992
(
2019
).
6.
E. P.
Favvas
,
G. Z.
Kyzas
,
E. K.
Efthimiadou
, and
A. C.
Mitropoulos
, “
Bulk nanobubbles, generation methods and potential applications
,”
Curr. Opin. Colloid Interface Sci.
54
,
101455
(
2021
).
7.
K.
Yuan
,
L.
Zhou
,
J.
Wang
,
Z.
Geng
,
J.
Qi
,
X.
Wang
,
L.
Zhang
, and
J.
Hu
, “
Formation of bulk nanobubbles induced by accelerated electrons irradiation: Dependences on dose rates and doses of irradiation
,”
Langmuir
38
,
7938
(
2022
).
8.
A.
Roy
,
K. K.
Modi
,
S.
Khasnavis
,
S.
Ghosh
,
R.
Watson
, and
K.
Pahan
, “
Enhancement of morphological plasticity in hippocampal neurons by a physically modified saline via phosphatidylinositol-3 kinase
,”
PLoS One
9
,
e101883
(
2014
).
9.
P. S.
Epstein
and
M. S.
Plesset
, “
On the stability of gas bubbles in liquid-gas solutions
,”
J. Chem. Phys.
18
,
1505
1509
(
1950
).
10.
K.
Ohgaki
,
N. Q.
Khanh
,
Y.
Joden
,
A.
Tsuji
, and
T.
Nakagawa
, “
Physicochemical approach to nanobubble solutions
,”
Chem. Eng. Sci.
65
,
1296
1300
(
2010
).
11.
N.
Nirmalkar
,
A.
Pacek
, and
M.
Barigou
, “
On the existence and stability of bulk nanobubbles
,”
Langmuir
34
,
10964
10973
(
2018
).
12.
M. R.
Ghaani
,
P. G.
Kusalik
, and
N. J.
English
, “
Massive generation of metastable bulk nanobubbles in water by external electric fields
,”
Sci. Adv.
6
,
eaaz0094
(
2020
).
13.
M.
Alheshibri
and
V. S.
Craig
, “
Differentiating between nanoparticles and nanobubbles by evaluation of the compressibility and density of nanoparticles
,”
J. Phys. Chem. C
122
,
21998
22007
(
2018
).
14.
B. H.
Tan
,
H.
An
, and
C.-D.
Ohl
, “
Stability of surface and bulk nanobubbles
,”
Curr. Opin. Colloid Interface Sci.
53
,
101428
(
2021
).
15.
K.
Yasui
,
T.
Tuziuti
,
W.
Kanematsu
, and
K.
Kato
, “
Dynamic equilibrium model for a bulk nanobubble and a microbubble partly covered with hydrophobic material
,”
Langmuir
32
,
11101
11110
(
2016
).
16.
N.
Taccoen
,
F.
Lequeux
,
D. Z.
Gunes
, and
C. N.
Baroud
, “
Probing the mechanical strength of an armored bubble and its implication to particle-stabilized foams
,”
Phys. Rev. X
6
,
011010
(
2016
).
17.
L.
Zhang
,
H.
Chen
,
Z.
Li
,
H.
Fang
, and
J.
Hu
, “
Long lifetime of nanobubbles due to high inner density
,”
Sci. China, Ser. G
51
,
219
224
(
2008
).
18.
P.
Attard
, “
The stability of nanobubbles
,”
Eur. Phys. J.: Spec. Top.
223
,
893
914
(
2014
).
19.
S.
Wang
,
L.
Zhou
,
X.
Wang
,
J.
Hu
,
P.
Li
,
G.
Lin
,
Y.
Gao
,
L.
Zhang
, and
C.
Wang
, “
Collective dynamics of bulk nanobubbles with size-dependent surface tension
,”
Langmuir
37
,
7986
7994
(
2021
).
20.
D.
Lohse
and
X.
Zhang
, “
Pinning and gas oversaturation imply stable single surface nanobubbles
,”
Phys. Rev. E
91
,
031003
(
2015
).
21.
Y.
Lu
,
L.
Yang
,
Y.
Kuang
,
Y.
Song
,
J.
Zhao
, and
A. K.
Sum
, “
Molecular simulations on the stability and dynamics of bulk nanobubbles in aqueous environments
,”
Phys. Chem. Chem. Phys.
23
,
27533
27542
(
2021
).
22.
B. H.
Tan
,
H.
An
, and
C.-D.
Ohl
, “
How bulk nanobubbles might survive
,”
Phys. Rev. Lett.
124
,
134503
(
2020
).
23.
Y.
Wang
,
L.
Zhou
,
J.
Hu
, and
L.
Zhang
, “
Theoretical analysis on the stability of single bulk nanobubble
,”
Front. Mater.
9
,
824283
(
2022
).
24.
V.
Akulichev
, “
Hydration of ions and the vacitation resistance of water
,”
Sov. Phys. - Acoust.
12
,
144
150
(
1966
).
25.
H.
Zhang
,
Z.
Guo
, and
X.
Zhang
, “
Surface enrichment of ions leads to the stability of bulk nanobubbles
,”
Soft Matter
16
,
5470
5477
(
2020
).
26.
N.
Bunkin
,
A.
Kochergin
,
A.
Lobeyev
,
B.
Ninham
, and
O.
Vinogradova
, “
Existence of charged submicrobubble clusters in polar liquids as revealed by correlation between optical cavitation and electrical conductivity
,”
Colloids Surf., A
110
,
207
212
(
1996
).
27.
N.
Bunkin
and
A.
Shkirin
, “
Nanobubble clusters of dissolved gas in aqueous solutions of electrolyte. II. Theoretical interpretation
,”
J. Chem. Phys.
137
,
054707
(
2012
).
28.
M.
Takahashi
, “
ζ potential of microbubbles in aqueous solutions: Electrical properties of the gas-water interface
,”
J. Phys. Chem. B
109
,
21858
21864
(
2005
).
29.
P.
Creux
,
J.
Lachaise
,
A.
Graciaa
, and
J. K.
Beattie
, “
Specific cation effects at the hydroxide-charged air/water interface
,”
J. Phys. Chem. C
111
,
3753
3755
(
2007
).
30.
P. A.
Satpute
and
J. C.
Earthman
, “
Hydroxyl ion stabilization of bulk nanobubbles resulting from microbubble shrinkage
,”
J. Colloid Interface Sci.
584
,
449
455
(
2021
).
31.
M.
Li
,
X.
Ma
,
J.
Eisener
,
P.
Pfeiffer
,
C.-D.
Ohl
, and
C.
Sun
, “
How bulk nanobubbles are stable over a wide range of temperatures
,”
J. Colloid Interface Sci.
596
,
184
198
(
2021
).
32.
X.
Ma
,
M.
Li
,
P.
Pfeiffer
,
J.
Eisener
,
C.-D.
Ohl
, and
C.
Sun
, “
Ion adsorption stabilizes bulk nanobubbles
,”
J. Colloid Interface Sci.
606
,
1380
1394
(
2022
).
33.
X.
Ma
,
M.
Li
,
X.
Xu
, and
C.
Sun
, “
On the role of surface charge and surface tension tuned by surfactant in stabilizing bulk nanobubbles
,”
Appl. Surf. Sci.
608
,
155232
(
2023
).
34.
X.
Ma
,
M.
Li
, and
C.
Sun
, “
Effect of ionic environment in aqueous solution on nucleation and stabilization of bulk nanobubbles
,”
Appl. Surf. Sci.
656
,
159726
(
2024
).
35.
J. H.
Weijs
,
J. R.
Seddon
, and
D.
Lohse
, “
Diffusive shielding stabilizes bulk nanobubble clusters
,”
ChemPhysChem
13
,
2197
2204
(
2012
).
36.
M.
Alheshibri
,
A.
Al Baroot
,
L.
Shui
, and
M.
Zhang
, “
Nanobubbles and nanoparticles
,”
Curr. Opin. Colloid Interface Sci.
55
,
101470
(
2021
).
37.
L.
Zhou
,
S.
Wang
,
L.
Zhang
, and
J.
Hu
, “
Generation and stability of bulk nanobubbles: A review and perspective
,”
Curr. Opin. Colloid Interface Sci.
53
,
101439
(
2021
).
38.
T.
Tuziuti
,
K.
Yasui
, and
W.
Kanematsu
, “
Influence of increase in static pressure on bulk nanobubbles
,”
Ultrason. Sonochem.
38
,
347
350
(
2017
).
39.
T.
Tuziuti
,
K.
Yasui
, and
W.
Kanematsu
, “
Variations in the size distribution of bulk nanobubbles in response to static pressure increases
,”
Jpn. J. Appl. Phys., Part 2
59
,
SKKD03
(
2020
).
40.
X.-t.
Ma
,
M.-b.
Li
, and
C.
Sun
, “
Measurement and characterization of bulk nanobubbles by nanoparticle tracking analysis method
,”
J. Hydrodyn.
34
,
1121
1133
(
2022
).
41.
K.
Makino
and
H.
Ohshima
, “
Electrophoretic mobility of a colloidal particle with constant surface charge density
,”
Langmuir
26
,
18016
18019
(
2010
).
You do not currently have access to this content.