In this paper, we used the multi-relaxation time lattice Boltzmann method to investigate natural convection in a triangular-shaped cavity filled with a tri-hybrid nanofluid. The cavity is partially heated by a chip of fixed size (l=L/2), the position of which varies on the left and bottom walls in order to find the optimal positions. The inclined side is maintained at a cool temperature, while the other parts are adiabatic. A detailed analysis is carried out on the impact of four essential parameters on the optimization of heat transfer: the Rayleigh number, ranging between Ra = 103 and Ra = 106; the partial heating position, showing the cavity in six different configurations; the fluid type, including pure water, nanofluid, hybrid nanofluid, and tri-hybrid nanofluid; and finally, the volume concentration of the nanoparticles for three values, ϕ = 0%, 3%, and 6%. Results are presented in the form of isotherms, streamlines, temperature and velocity profiles, and the mean Nusselt number values. As the results show, the position of the partial heater plays a crucial role, influencing natural convection heat transfer significantly in certain positions at all values of the Rayleigh number. The type of fluid has a remarkable impact on the amplification of natural convection at large values of the Rayleigh number, where the buoyancy force becomes strong. Notably, the use of tri-hybrid nanofluid shows a clear improvement in natural convection heat transfer. Furthermore, a substantial increase in thermal transmittance is observed with an increasing nanoparticle volume fraction. The validation results agree well with both numerical results and experimental data published in the literature.

1.
S.
Ahmad
,
J.
Cai
, and
K.
Ali
, “
Prediction of new vortices in single-phase nanofluid due to dipole interaction
,”
J. Therm. Anal. Calorim.
147
(
1
),
461
475
(
2022
).
2.
S.
Ahmad
,
K.
Ali
,
N. M.
Katbar
,
Y.
Akhtar
,
J.
Cai
,
W.
Jamshed
,
S. M.
El Din
,
A.
Abd-Elmonem
, and
N. S.
Elmki Abdalla
, “
Vortex generation due to multiple localized magnetic fields in the hybrid nanofluid flow—A numerical investigation
,”
Heliyon
9
(
7
),
e17756
(
2023
).
3.
I.
El Glili
and
M.
Driouich
, “
Pulsatile flow of EMHD non-Newtonian nano-blood through an inclined tapered porous artery with combination of stenosis and aneurysm under body acceleration and slip effects
,”
Numer. Heat Transfer, Part A
(published online,
2024
).
4.
F. H.
Lai
and
Y. T.
Yang
, “
Lattice Boltzmann simulation of natural convection heat transfer of Al2O3/water nanofluids in a square enclosure
,”
Int. J. Therm. Sci.
50
(
10
),
1930
1941
(
2011
).
5.
H. A.
Kumara Swamy
,
N.
Keerthi Reddy
,
M.
Sankar
,
A.
Yoon
, and
Y.
Do
, “
Computational study of magneto-convective flow of aqueous-Fe3O4 nanoliquid in a tilted cylindrical chamber partially layered by porous medium: Entropy generation analysis
,”
Phys. Fluids
36
(
3
),
037135
(
2024
).
6.
P.
Karki
and
K. M.
Gangawane
, “
Influence of location of twin-adiabatic blocks on magnetohydrodynamics-based double-diffusive convection and entropy generation for a liquid metal
,”
Phys. Fluids
36
(
5
),
053606
(
2024
).
7.
Y.
Foukhari
,
M.
Sammouda
, and
M.
Driouich
, “
MHD natural convection in an annular space between two coaxial cylinders partially filled with metal base porous layer saturated by Cu–water nanofluid and subjected to a heat flux
,”
J. Therm. Anal. Calorim.
149
(
1
),
131
144
(
2024
).
8.
Z. H.
Xuan
,
W. Z.
Fang
,
Y. H.
Lu
,
C.
Yang
, and
W. Q.
Tao
, “
Significance of the natural convection to the heat transfer of porous media: A pore-scale study
,”
Int. J. Heat Mass Transfer
222
,
125163
(
2024
).
9.
H.
Shahid
,
M.
Sajida
,
W. A.
Khan
, and
F.
Ahmad
, “
Analysis of heat transfer in a parallelogram-shaped cavity with porous medium under non-uniform temperature
,”
Alexandria Eng. J.
95
,
204
223
(
2024
).
10.
B. M.
Al-Srayyih
,
S.
Gao
, and
S. H.
Hussain
, “
Natural convection flow of a hybrid nanofluid in a square enclosure partially filled with a porous medium using a thermal non-equilibrium model
,”
Phys. Fluids
31
(
4
),
043609
(
2019
).
11.
H.
Faraji
,
M.
Teggar
,
A.
Arshad
,
M.
Arıcı
,
E.
Mehdi Berra
, and
K.
Choukairy
, “
Lattice Boltzmann simulation of natural convection heat transfer phenomenon for thermal management of multiple electronic components
,”
Therm. Sci. Eng. Prog.
45
,
102126
(
2023
).
12.
A.
Rahimi
,
A.
Dehghan Saee
,
A.
Kasaeipoor
, and
E.
Hasani Malekshah
, “
A comprehensive review on natural convection flow and heat transfer: The most practical geometries for engineering applications
,”
Int. J. Numer. Methods Heat Fluid Flow
29
(
3
),
834
877
(
2019
).
13.
N. S.
Gibanov
and
M. A.
Sheremet
, “
Natural convection in a cubical cavity with different heat source configurations
,”
Therm. Sci. Eng. Prog.
7
,
138
145
(
2018
).
14.
J. A. R.
Babu
,
K. K.
Kumar
, and
S. S.
Rao
, “
State-of-art review on hybrid nano fluids
,”
Renewable Sustainable Energy Rev.
77
,
551
565
(
2017
).
15.
S.
Suneetha
,
K.
Subbarayudu
, and
P.
Bala Anki Reddy
, “
Hybrid nanofluids development and benefits: A comprehensive review
,”
J. Therm. Eng.
8
(
3
),
445
455
(
2022
).
16.
M.
Muneeshwaran
,
G.
Srinivasan
,
P.
Muthukumar
, and
C. C.
Wang
, “
Role of hybrid-nanofluid in heat transfer enhancement—A review
,”
Int. Commun. Heat Mass Transfer
125
,
105341
(
2021
).
17.
S.
Ahmad
,
K.
Ali
,
T.
Tayebi
,
Y.
Akhtar
,
F. L.
Rashid
,
M.
Muzamil
,
A.
Shafi
, and
H. N.
Mangi
, “
Unveiling the magic of localized magnetic field on vortex dynamics and heat transfer of tetra-hybrid nanofluid in lid-driven cavity: An insightful investigation
,”
J. Therm. Anal. Calorim.
149
(
2
),
653
670
(
2024
).
18.
K.
Thirumalaisamy
and
S.
Ramachandran
, “
Comparative heat transfer analysis on Fe3O4–H2O and Fe3O4–Cu–H2O flow inside a tilted square porous cavity with shape effects
,”
Phys. Fluids
35
(
2
),
022007
(
2023
).
19.
C. S. K.
Raju
,
K.
Sajjan
, and
S.-J.
Yook
, “
Heat transfer characteristics of rectangular/triangular/convex-shaped fins filled with hybrid nanoparticles under dry and wet conditions
,”
Phys. Fluids
35
(
11
),
112010
(
2023
).
20.
B.
El hadoui
and
M.
Kaddiri
, “
Enhancing the convective heat transfer in vertical and horizontal rectangular enclosures using nanofluids: The crucial role of aspect ratio
,”
Phys. Fluids
36
(
1
),
012008
(
2024
).
21.
P.
Karki
and
K.
Gangawane
, “
Study of magnetohydrodynamics-based-mixed convection & entropy generation within the rectangular enclosure with two obstacles for Cu-SiO2 multiwalled carbon nanotubes ternary hybrid nanofluids
,”
Numer. Heat Transfer, Part A
85
(
14
),
2257
2279
(
2024
).
22.
S. D.
Probert
and
T. J.
Thirst
, “
Centre for Thermal Insulation Studies, School of Mechanical Engineering, Cranfield Institute of Technology, Cranfield, Bedford MK43 OAL (Great Britain)
,”
Appl. Energy
3
(
3
),
41
50
(
1977
).
23.
R. D.
Flack
, “
The experimental measurement of natural convection heat transfer in triangular enclosures heated or cooled from below
,”
J. Heat Transfer
102
(
4
),
770
772
(
1980
).
24.
R. D.
Flack
, Jr.
and
C. L.
Witt
, “
Velocity measurements in two natural convection air flows using a laser velocimeter
,”
J. Heat Transfer
101
(
2
),
256
260
(
1979
).
25.
D.
Poulikakos
and
A.
Bejan
, “
Natural convection experiments in a triangular enclosure
,”
J. Heat Transfer
105
(
3
),
652
655
(
1983
).
26.
E. H.
Ridouane
and
A.
Campo
, “
Experimental-based correlations for the characterization of free convection of air inside isosceles triangular cavities with variable apex angles
,”
Exp. Heat Transfer
18
(
2
),
81
86
(
2005
).
27.
T. N.
Anderson
,
M.
Duke
, and
J. K.
Carson
, “
Experimental determination of natural convection heat transfer coefficients in an attic shaped enclosure
,”
Int. Commun. Heat Mass Transfer
37
(
4
),
360
363
(
2010
).
28.
H. F.
Oztop
,
Y.
Varol
,
A.
Koca
, and
M.
Firat
, “
Experimental and numerical analysis of buoyancy-induced flow in inclined triangular enclosures
,”
Int. Commun. Heat Mass Transfer
39
(
8
),
1237
1244
(
2012
).
29.
G.
Yesiloz
and
O.
Aydin
, “
Laminar natural convection in right-angled triangular enclosures heated and cooled on adjacent walls
,”
Int. J. Heat Mass Transfer
60
(
1
),
365
374
(
2013
).
30.
V. A.
Akinsete
and
T. A.
Coleman
, “
Heat transfer by steady laminar free convection in triangular enclosures
,”
Int. J. Heat Mass Transfer
25
(
7
),
991
998
(
1982
).
31.
D.
Poulikakos
and
A.
Bejan
, “
The fluid dynamics of an attic space
,”
J. Fluid Mech.
131
,
251
269
(
1983
).
32.
E. M.
Del Campo
,
M.
Sen
, and
E.
Ramos
, “
Analysis of laminar natural convection in a triangular enclosure
,”
Numer. Heat Transfer
13
(
3
),
353
372
(
1988
).
33.
Y. E.
Karyakin
,
Y. A.
Sokovishin
, and
O. G.
Martynenko
, “
Transient natural convection in triangular enclosures
,”
Int. J. Heat Mass Transfer
31
(
9
),
1759
1766
(
1988
).
34.
H.
Salmun
, “
Convection patterns in a triangular domain
,”
Int. J. Heat Mass Transfer
38
(
2
),
351
362
(
1995
).
35.
G. A.
Holtzman
,
R. W.
Hill
, and
K. S.
Ball
, “
Laminar natural convection in isosceles triangular enclosures heated from below and symmetrically cooled from above
,”
J. Heat Transfer
122
(
3
),
485
491
(
2000
).
36.
H.
Asan
and
L.
Namli
, “
Numerical simulation of buoyant flow in a roof of triangular cross-section under winter day boundary conditions
,”
Energy Build.
33
(
7
),
753
757
(
2001
).
37.
K. A.
Joudi
,
I. A.
Hussein
, and
A. A.
Farhan
, “
Computational model for a prism shaped storage solar collector with a right triangular cross section
,”
Energy Convers. Manage.
45
(
3
),
391
409
(
2004
).
38.
Y.
Varol
,
H. F.
Oztop
, and
T.
Yilmaz
, “
Natural convection in triangular enclosures with protruding isothermal heater
,”
Int. J. Heat Mass Transfer
50
(
13–14
),
2451
2462
(
2007
).
39.
E. F.
Kent
, “
Numerical analysis of laminar natural convection in isosceles triangular enclosures
,”
Proc. Inst. Mech. Eng., Part C
223
(
5
),
1157
1169
(
2009
).
40.
Q.
Sun
and
I.
Pop
, “
Free convection in a triangle cavity filled with a porous medium saturated with nanofluids with flush mounted heater on the wall
,”
Int. J. Therm. Sci.
50
(
11
),
2141
2153
(
2011
).
41.
M. K.
Triveni
,
D.
Sen
, and
R.
Panua
, “
Laminar natural convection for thermally active partial side walls in a right-angled triangular cavity
,”
Arab. J. Sci. Eng.
39
(
12
),
9025
9038
(
2014
).
42.
M.
Triveni
,
R.
Panua
, and
D.
Sen
, “
Effects of variant positions of cold walls on natural convection in a triangular cavity
,”
J. Appl. Fluid Mech.
9
(
1
),
185
193
(
2016
).
43.
J.
Baliti
,
Y.
Elguennouni
,
M.
Hssikou
, and
M.
Alaoui
, “
Simulation of natural convection by multirelaxation time lattice Boltzmann method in a triangular enclosure
,”
Fluids
7
(
2
),
74
(
2022
).
44.
F.
Selimefendigil
and
A. J.
Chamkha
, “
Natural convection of a hybrid nanofluid-filled triangular annulus with an opening
,”
Comput. Therm. Sci.
8
(
6
),
555
566
(
2016
).
45.
A. M.
Rashad
,
A. J.
Chamkha
,
M. A.
Ismael
, and
T.
Salah
, “
Magnetohydrodynamics natural convection in a triangular cavity filled with a Cu-Al2O3/water hybrid nanofluid with localized heating from below and internal heat generation
,”
J. Heat Transfer
140
(
7
),
072502
(
2018
).
46.
Z. K.
Ghoben
and
A. K.
Hussein
, “
The natural convection inside a 3D triangular cross section cavity filled with nanofluid and included cylinder with different arrangements
,”
Diagnostyka
23
(
2
),
2022205
(
2022
).
47.
Y.
Elguennouni
,
M.
Hssikou
,
J.
Baliti
, and
M.
Alaoui
, “
Cavity inclination effect on convection flow in a triangular geometry
,”
Heat Transfer
52
(
4
),
3253
3279
(
2023
).
48.
F.
Agoujil
,
Y.
Elguennouni
,
Y.
Ighris
,
J.
Baliti
, and
M.
Hssikou
, “
Modeling of natural convection by lattice Boltzmann in a partially heated cavity
,”
E3S Web Conf.
469
,
00071
(
2023
).
49.
Y.
Oulahou
,
Y.
Elguennouni
,
M.
Hssikou
,
J.
Baliti
, and
M.
Alaoui
, “
Theoretical examination of the volume concentration and nanoparticles density influence on the convective heat transfer enhancement of nanofluid in 2D cavity including the square heater
,”
Probl. Reg. Energy
4
(
60
),
55
70
(
2023
).
50.
R.
Mohebbi
,
M.
Izadi
, and
A. J.
Chamkha
, “
Heat source location and natural convection in a C-shaped enclosure saturated by a nanofluid
,”
Phys. Fluids
29
(
12
),
122009
(
2017
).
51.
M.
Hssikou
,
Y.
Elguennouni
,
J.
Baliti
, and
M.
Alaoui
, “
Heat transfer of gas flow within a partially heated or cooled square cavity
,”
Modell. Simul. Eng.
2020
,
8886682
.
52.
Y.
Ighris
,
Y.
Bouhouchi
,
Y.
Elguennouni
,
J.
Baliti
,
M.
Hssikou
, and
A.
Boumezzough
, “
Numerical study of natural convection in an inclined cavity filled with Al2O3/Cu-H2O nanofluids
,”
Numer. Heat Transfer, Part A
(published online,
2024
).
53.
I.
Mejri
,
A.
Mahmoudi
,
M. A.
Abbassi
, and
A.
Omri
, “
LBM simulation of natural convection in an inclined triangular cavity filled with water
,”
Alexandria Eng. J.
55
(
2
),
1385
1394
(
2016
).
54.
Y.
Ighris
,
F.
Agoujil
,
Y.
Elguennouni
,
M.
Hssikou
,
J.
Baliti
,
A.
Boumezzough
,
Y.
Bouhouchi
, and
Y.
Sadiki
, in
Advanced Materials for Sustainable Energy and Engineering
, edited by
E. M.
Elkhattabi
,
M.
Boutahir
,
K.
Termentzidis
,
K.
Nakamura
, and
A.
Rahmani
(
Springer
,
Cham
,
2024
), pp.
504
512
.
55.
M. S.
Islam
,
S.
Islam
, and
M. N. A. A.
Siddiki
, “
Numerical simulation with sensitivity analysis of MHD natural convection using Cu-TiO2-H2O hybrid nanofluids
,”
Int. J. Thermofluids
20
,
100509
(
2023
).
56.
A. S.
Dogonchi
and
Hashim
, “
Heat transfer by natural convection of Fe3O4-water nanofluid in an annulus between a wavy circular cylinder and a rhombus
,”
Int. J. Heat Mass Transfer
130
,
320
332
(
2019
).
57.
V.
Rajesh
and
M.
Sheremet
, “
Free convection in a square ternary hybrid nanoliquid chamber with linearly heating adjacent walls
,”
Nanomaterials
13
(
21
),
2860
(
2023
).
58.
M. M.
Rashidi
,
M.
Sadri
, and
M. A.
Sheremet
, “
Numerical simulation of hybrid nanofluid mixed convection in a lid-driven square cavity with magnetic field using high-order compact scheme
,”
Nanomaterials
11
(
9
),
2250
(
2021
).
59.
H. C.
Brinkman
, “
The viscosity of concentrated suspensions and solutions
,”
J. Chem. Phys.
20
(
4
),
571
(
1952
).
60.
A. A.
Mohamad
,
Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Codes
, 2nd ed. (
Springer Nature
,
London, UK
,
2019
).
You do not currently have access to this content.