To assess the influence of climate change on the estimates of extreme wind speeds induced by typhoons, the present study employs a Monte Carlo simulation approach to forecast the extreme wind speeds in the proximity of Hong Kong when the sea surface temperatures rise as projected by various climate change models according to the Representative Concentration Pathway (RCP) 8.5. In addition, the present study shows the first attempt to quantitatively assess the uncertainty buried in the prediction of the extreme wind speed in association with typhoons taking the rise in sea surface temperatures, and therefore climate change, into consideration. It is found that climate change leads, with high confidence, to the increase in extreme wind speeds brought about by typhoons. From the numerical simulation, it is found that the mean wind speeds associated with typhoons impacting Hong Kong rise from 10.8 m/s (1961–1990) to 12.4 m/s (2051–2080), and the extreme wind speed is 47.5 m/s during 2051–2080 under the RCP 8.5 climate scenario, which is 21.2% higher than that corresponding to the period of 1961–1990. As for the quantification of uncertainties in the extreme wind estimates, the inter-quartile ranges for the sea surface temperatures projected by various climate models in July and October are 9.5% and 8.2% in 2050, respectively, and go up to 9.6% and 9.9% in 2080. The extreme wind speeds with 50 years return period show inter-quartile ranges of 14.2% in 2050, and the value decreases to 12.8% in 2080.

1.
L.
Bakkensen
, “
The impact of climate and socioeconomic change on typhoon losses in China
,” CMCC Research Paper 204 (
2013
).
2.
H.
Lam
,
M. H.
Kok
, and
K. K. Y.
Shum
, “
Benefits from typhoons—The Hong Kong perspective
,”
Weather
67
(
1
),
16
21
(
2012
).
3.
Y. A.
Liou
and
R. S.
Pandey
, “
Interactions between typhoons Parma and Melor (2009) in North West Pacific Ocean
,”
Weather Clim. Extremes
29
,
100272
(
2020
).
4.
N.
Mori
,
M.
Kato
,
S.
Kim
,
H.
Mase
,
Y.
Shibutani
,
T.
Takemi
et al, “
Local amplification of storm surge by Super Typhoon Haiyan in Leyte Gulf
,”
Geophys. Res. Lett.
41
(
14
),
5106
5113
, https://doi.org/10.1002/2014GL060689 (
2014
).
5.
C. W.
Choy
,
M. C.
Wu
, and
T. C.
Lee
, “
Assessment of the damages and direct economic loss in Hong Kong due to Super Typhoon Mangkhut in 2018
,”
Trop. Cyclone Res. Rev.
9
(
4
),
193
205
(
2020
).
6.
T. R.
Knutson
,
J. J.
Sirutis
,
S. T.
Garner
,
G. A.
Vecchi
, and
I. M.
Held
, “
Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions
,”
Nat. Geosci.
1
(
6
),
359
364
(
2008
).
7.
G. J.
Holland
and
C. L.
Bruyère
, “
Recent intense hurricane response to global climate change
,”
Clim. Dyn.
42
(
3
),
617
627
(
2014
).
8.
M. E.
Mann
and
K. A.
Emanuel
, “
Atlantic hurricane trends linked to climate change
,”
EoS. Trans. AGU
87
(
24
),
233
241
(
2006
).
9.
J. Y.
Tu
,
C.
Chou
, and
P. S.
Chu
, “
The abrupt shift of typhoon activity in the vicinity of Taiwan and its association with western North Pacific–East Asian climate change
,”
J. Clim.
22
(
13
),
3617
3628
(
2009
).
10.
K.
Emanuel
, “
Increasing destructiveness of tropical cyclones over the past 30 years
,”
Nature
436
(
7051
),
686
688
(
2005
).
11.
M.
Zhao
,
I. M.
Held
, and
G. A.
Vecchi
, “
Retrospective forecasts of the hurricane season using a global atmospheric model assuming persistence of SST anomalies
,”
Mon. Weather Rev.
138
(
10
),
3858
3868
(
2010
).
12.
I.
Takayabu
,
K.
Hibino
,
H.
Sasaki
,
H.
Shiogama
,
N.
Mori
,
Y.
Shibutani
et al, “
Climate change effects on the worst-case storm surge: A case study of Typhoon Haiyan
,”
Environ. Res. Lett.
10
(
6
),
064011
(
2015
).
13.
H.
Murakami
,
E.
Levin
,
T.
Delworth
,
R.
Gudgel
, and
P.-C.
Hsu
, “
Dominant effect of relative tropical Atlantic warming on major hurricane occurrence
,”
Science
362
(
6416
),
794
799
(
2018
).
14.
J. C.
Trepanier
, “
North Atlantic hurricane winds in warmer than normal seas
,”
Atmosphere
11
(
3
),
293
(
2020
).
15.
K.
Tsuboki
,
M. K.
Yoshioka
,
T.
Shinoda
,
M.
Kato
,
S.
Kanada
, and
A.
Kitoh
, “
Future increase of supertyphoon intensity associated with climate change
,”
Geophys. Res. Lett.
42
(
2
),
646
652
, https://doi.org/10.1002/2014GL061793 (
2015
).
16.
Y.
Guo
,
Y.
Hou
, and
P.
Qi
, “
Analysis of typhoon wind hazard in Shenzhen City by Monte-Carlo simulation
,”
J. Oceanol. Limnol.
37
(
6
),
1994
2013
(
2019
).
17.
J.
Wang
,
K. T.
Tse
, and
S. W.
Li
, “
Integrating the effects of climate change using representative concentration pathways into typhoon wind field in Hong Kong
,” in
8th European African Conference on Wind Engineering
,
Bucharest, Romania
, 20–23 September
2022
.
18.
L.
Gomes
and
B.
Vickery
, “
Extreme wind speeds in mixed wind climates
,”
J. Wind Eng. Ind. Aerodyn.
2
(
4
),
331
344
(
1978
).
19.
T.
Ishihara
and
A.
Yamaguchi
, “
Prediction of the extreme wind speed in the mixed climate region by using Monte Carlo simulation and measure‐correlate‐predict method
,”
Wind Energy
18
(
1
),
171
186
(
2015
).
20.
P. J.
Vickery
and
L. A.
Twisdale
, “
Prediction of hurricane wind speeds in the United States
,”
J. Struct. Eng.
121
(
11
),
1691
1699
(
1995
).
21.
M. E.
Batts
,
E.
Simiu
, and
L. R.
Russell
, “
Hurricane wind speeds in the United States
,”
J. Struct. Div.
106
(
10
),
2001
2016
(
1980
).
22.
Z.
Huang
,
D. V.
Rosowsky
, and
P. R.
Sparks
, “
Long-term hurricane risk assessment and expected damage to residential structures
,”
Reliab. Eng. Syst. Saf.
74
(
3
),
239
249
(
2001
).
23.
L.
Mudd
,
Y.
Wang
,
C.
Letchford
, and
D.
Rosowsky
, “
Hurricane wind hazard assessment for a rapidly warming climate scenario
,”
J. Wind Eng. Ind. Aerodyn.
133
,
242
249
(
2014
).
24.
Y. F.
Xiao
,
Z. D.
Duan
,
Y. Q.
Xiao
,
J. P.
Ou
,
L.
Chang
, and
Q. S.
Li
, “
Typhoon wind hazard analysis for southeast China coastal regions
,”
Struct. Saf.
33
(
4–5
),
286
295
(
2011
).
25.
S.
Li
and
H.
Hong
, “
Use of historical best track data to estimate typhoon wind hazard at selected sites in China
,”
Nat. Hazards
76
(
2
),
1395
1414
(
2015
).
26.
Z.
Yan
,
B.
Liang
,
G.
Wu
,
S.
Wang
, and
P.
Li
, “
Ultra-long return level estimation of extreme wind speed based on the deductive method
,”
Ocean Eng.
197
,
106900
(
2020
).
27.
M.
Huang
,
Q.
Wang
,
Q.
Li
,
R.
Jing
,
N.
Lin
, and
L.
Wang
, “
Typhoon wind hazard estimation by full-track simulation with various wind intensity models
,”
J. Wind Eng. Ind. Aerodyn.
218
,
104792
(
2021
).
28.
L.
Mudd
,
Y.
Wang
,
C.
Letchford
, and
D.
Rosowsky
, “
Assessing climate change impact on the U.S. East Coast hurricane hazard: Temperature, frequency, and track
,”
Nat. Hazard Rev.
15
(
3
),
04014001
(
2014
).
29.
P. J.
Vickery
,
P. F.
Skerlj
, and
L. A.
Twisdale
, “
Simulation of hurricane risk in the US using empirical track model
,”
J. Struct. Eng.
126
(
10
),
1222
1237
(
2000
).
30.
X.
Chu
,
W.
Cui
,
L.
Zhao
,
S.
Cao
, and
Y.
Ge
, “
Probabilistic flutter analysis of a long-span bridge in typhoon-prone regions considering climate change and structural deterioration
,”
J. Wind Eng. Ind. Aerodyn.
215
,
104701
(
2021
).
31.
J.
Wang
,
K. T.
Tse
,
S.
Li
, and
J. C.
Fung
, “
Prediction of the typhoon wind field in Hong Kong: Integrating the effects of climate change using the Shared Socioeconomic Pathways
,”
Clim. Dyn.
59
(
7–8
),
2311
2329
(
2022
).
32.
L. R.
Schade
, “
Tropical cyclone intensity and sea surface temperature
,”
J. Atmos. Sci.
57
(
18
),
3122
3130
(
2000
).
33.
S. L.
Lavender
,
R. K.
Hoeke
, and
D. J.
Abbs
, “
The influence of sea surface temperature on the intensity and associated storm surge of tropical cyclone Yasi: A sensitivity study
,”
Nat. Hazards Earth Syst. Sci.
18
(
3
),
795
805
(
2018
).
34.
J.-p.
Yuan
and
J.
Jiang
, “
The relationships between tropical cyclone tracks and local SST over the western north pacific
,”
J. Trop. Meteorol.
17
(
2
),
120
(
2011
).
35.
J. J.
Freer
,
J. C.
Partridge
,
G. A.
Tarling
,
M. A.
Collins
, and
M. J.
Genner
, “
Predicting ecological responses in a changing ocean: The effects of future climate uncertainty
,”
Mar. Biol.
165
,
7
(
2018
).
36.
J. J.
Kennedy
, “
A review of uncertainty in in situ measurements and data sets of sea surface temperature
,”
Rev. Geophys.
52
(
1
),
1
32
, https://doi.org/10.1002/2013RG000434 (
2014
).
37.
J. J.
Kennedy
,
N. A.
Rayner
,
R. O.
Smith
,
D. E.
Parker
, and
M.
Saunby
, “
Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 2. Biases and homogenization
,”
J. Geophys. Res.: Atoms.
116
(
D14
), https://doi.org/10.1029/2010JD015218 (
2011
).
38.
Y.
Yara
,
M.
Fujii
,
H.
Yamano
, and
Y.
Yamanaka
, “
Projected coral bleaching in response to future sea surface temperature rises and the uncertainties among climate models
,”
Hydrobiologia
733
,
19
29
(
2014
).
39.
T.
Ose
and
O.
Arakawa
, “
Uncertainty of future precipitation change due to global warming associated with sea surface temperature change in the tropical Pacific
,”
J. Meteorol. Soc. Jpn.
89
(
5
),
539
552
(
2011
).
40.
H.-N.
Cheung
,
N.
Keenlyside
,
T.
Koenigk
,
S.
Yang
,
T.
Tian
,
Z.
Xu
et al, “
Assessing the influence of sea surface temperature and arctic sea ice cover on the uncertainty in the boreal winter future climate projections
,”
Clim. Dyn.
59
(
1
),
433
454
(
2022
).
41.
K. B.
Tokarska
and
N. P.
Gillett
, “
Cumulative carbon emissions budgets consistent with 1.5 °C global warming
,”
Nat. Clim. Change
8
,
296
299
(
2018
).
42.
T.
Sim
,
D.
Wang
, and
Z.
Han
, “
Assessing the disaster resilience of megacities: The case of Hong Kong
,”
Sustainability
10
(
4
),
1137
(
2018
).
43.
Y.
Xiao
,
Y.
Xiao
, and
Z.
Duan
, “
The typhoon wind hazard analysis in Hong Kong of China with the new formula for Holland B parameter and the CE wind field model
,” in
The Seventh Asia-Pacific Conference on Wind Engineering
,
Taipei, Taiwan
,
2009
.
44.
R. K.
Pachauri
,
M. R.
Allen
,
V. R.
Barros
,
J.
Broome
,
W.
Cramer
,
R.
Christ
et al,
Climate Change 2014: Synthesis Report, Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
(
IPCC
,
2014
).
45.
M. D.
Mastrandrea
,
K. J.
Mach
,
G.-K.
Plattner
,
O.
Edenhofer
,
T. F.
Stocker
,
C. B.
Field
et al, “
The IPCC AR5 guidance note on consistent treatment of uncertainties: A common approach across the working groups
,”
Clim. Change
108
(
4
),
675
691
(
2011
).
46.
A.
Revi
,
D.
Satterthwaite
,
F.
Aragón-Durand
,
J.
Corfee-Morlot
,
R. B.
Kiunsi
,
M.
Pelling
et al, “
Towards transformative adaptation in cities: The IPCC's fifth assessment
,”
Environ. Urbanization
26
(
1
),
11
28
(
2014
).
47.
D.
Scott
,
C. M.
Hall
, and
S.
Gössling
, “
A review of the IPCC Fifth Assessment and implications for tourism sector climate resilience and decarbonization
,”
J. Sustainable Tourism
24
(
1
),
8
30
(
2016
).
48.
S. E.
Werners
,
E.
Sparkes
,
E.
Totin
,
N.
Abel
,
S.
Bhadwal
,
J. R.
Butler
et al, “
Advancing climate resilient development pathways since the IPCC's fifth assessment report
,”
Environ. Sci. Policy
126
,
168
176
(
2021
).
49.
D.
Jiang
,
Y.
Sui
, and
X.
Lang
, “
Timing and associated climate change of a 2 °C global warming
,”
Int. J. Climatol.
36
(
14
),
4512
4522
(
2016
).
50.
R. J.
Nicholls
and
A.
Cazenave
, “
Sea-level rise and its impact on coastal zones
,”
Science
328
(
5985
),
1517
1520
(
2010
).
51.
P.
Huang
and
J.
Ying
, “
A multimodel ensemble pattern regression method to correct the tropical Pacific SST change patterns under global warming
,”
J. Clim.
28
(
12
),
4706
4723
(
2015
).
52.
X.
Chen
and
T.
Zhou
, “
Distinct effects of global mean warming and regional sea surface warming pattern on projected uncertainty in the South Asian summer monsoon
,”
Geophys. Res. Lett.
42
(
21
),
9433
9439
, https://doi.org/10.1002/2015GL066384 (
2015
).
53.
V.
Echevin
,
M.
Gévaudan
,
D.
Espinoza-Morriberón
,
J.
Tam
,
O.
Aumont
,
D.
Gutierrez
et al, “
Physical and biogeochemical impacts of RCP8.5 scenario in the Peru upwelling system
,”
Biogeosciences
17
(
12
),
3317
3341
(
2020
).
54.
J. K.
Moore
,
K.
Lindsay
,
S. C.
Doney
,
M. C.
Long
, and
K.
Misumi
, “
Marine ecosystem dynamics and biogeochemical cycling in the Community Earth System Model [CESM1 (BGC)]: Comparison of the 1990s with the 2090s under the RCP4.5 and RCP8.5 scenarios
,”
J. Clim.
26
(
23
),
9291
9312
(
2013
).
55.
M. A.
Bender
,
T. R.
Knutson
,
R. E.
Tuleya
,
J. J.
Sirutis
,
G. A.
Vecchi
,
S. T.
Garner
et al, “
Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes
,”
Science
327
(
5964
),
454
458
(
2010
).
56.
Y.
Meng
,
M.
Matsui
, and
K.
Hibi
, “
An analytical model for simulation of the wind-field in a typhoon boundary-layer
,”
J. Wind Eng. Ind. Aerodyn.
56
(
2–3
),
291
310
(
1995
).
57.
W. F.
Huang
and
Y. L.
Xu
, “
A refined model for typhoon wind field simulation in boundary layer
,”
Adv. Struct. Eng.
15
(
1
),
77
89
(
2012
).
58.
W. F.
Huang
,
Y. L.
Xu
,
C. W.
Li
, and
H. J.
Liu
, “
Prediction of design typhoon wind speeds and profiles using refined typhoon wind field model
,”
Adv. Steel Constr.
7
(
4
),
387
402
(
2011
).
59.
R. A.
Fisher
and
L. H. C.
Tippett
, “
Limiting forms of the frequency distribution of the largest or smallest member of a sample
,”
Math. Proc. Cambridge Philos. Soc.
24
,
180
190
(
1928
).
60.
E. J.
Gumbel
,
Statistics of Extremes
(
Columbia University Press
,
1958
).
61.
L.
Weiss
, “
Asymptotic inference about a density function at an end of its range
,”
Naval Res. Logist. Q.
18
(
1
),
111
114
(
1971
).
62.
E.
Simiu
and
N.
Heckert
, “
Extreme wind distribution tails: A ‘peaks over threshold’ approach
,”
J. Struct. Eng.
122
(
5
),
539
547
(
1996
).
63.
Y.
An
and
M.
Pandey
, “
A comparison of methods of extreme wind speed estimation
,”
J. Wind Eng. Ind. Aerodyn.
93
(
7
),
535
545
(
2005
).
64.
N.
Cook
, “
Towards better estimation of extreme winds
,”
J. Wind Eng. Ind. Aerodyn.
9
(
3
),
295
323
(
1982
).
65.
J. D.
Holmes
,
P.
Hitchcock
,
K.
Kwok
, and
J.
Chim
, “
Re-analysis of typhoon wind speeds in Hong Kong
,” in
Fifth Asia-Pacific Conference on Wind Engineering
,
Kyoto, Japan
,
2001
.
66.
J. D.
Holmes
,
K.
Kwok
, and
P. A.
Hitchcock
, “
Extreme wind speeds and wind load factors for Hong Kong
,” in
The Seventh Asia-Pacific Conference on Wind Engineering
,
2009
.
67.
Y.
Liu
,
D.
Chen
,
S.
Li
,
P. W.
Chan
, and
Q.
Zhang
, “
A three-dimensional numerical simulation approach to assess typhoon hazards in China coastal regions
,”
Nat. Hazards
96
(
2
),
809
835
(
2019
).
68.
S.
Soisuvarn
and
S.
Oudomying
, “
Characterization of the tropical cyclones wind radii in the North Western Pacific Basin using the ASCAT winds data products
,” in
Progress in Electromagnetics Research Symposium (PIERS-Toyama)
(
IEEE
,
2018
).
69.
G.
Fang
,
L.
Zhao
,
S.
Cao
,
L.
Zhu
, and
Y.
Ge
, “
Estimation of tropical cyclone wind hazards in coastal regions of China
,”
Nat. Hazards Earth Syst. Sci.
20
(
6
),
1617
1637
(
2020
).
70.
S.
Nayak
and
T.
Takemi
, “
Robust responses of typhoon hazards in northern Japan to global warming climate: Cases of landfalling typhoons in 2016
,”
Meteorol. Appl.
27
(
5
),
e1954
(
2020
).
71.
T. C.
Wu
,
C. S.
Velden
,
S. J.
Majumdar
,
H.
Liu
, and
J. L.
Anderson
, “
Understanding the influence of assimilating subsets of enhanced atmospheric motion vectors on numerical analyses and forecasts of tropical cyclone track and intensity with an ensemble Kalman filter
,”
Mon. Weather Rev.
143
(
7
),
2506
2531
(
2015
).
72.
P.
Duran
and
J.
Molinari
, “
Upper-tropospheric low Richardson number in tropical cyclones: Sensitivity to cyclone intensity and the diurnal cycle
,”
J. Atmos. Sci.
73
(
2
),
545
554
(
2016
).
73.
R. J.
Stouffer
,
V.
Eyring
,
G. A.
Meehl
,
S.
Bony
,
C.
Senior
,
B.
Stevens
et al, “
CMIP5 scientific gaps and recommendations for CMIP6
,”
Bull. Am. Meteorol. Soc.
98
(
1
),
95
105
(
2017
).
74.
S.
Kanada
,
S.
Tsujino
,
H.
Aiki
,
M. K.
Yoshioka
,
Y.
Miyazawa
,
K.
Tsuboki
et al, “
Impacts of SST patterns on rapid intensification of Typhoon Megi (2010)
,”
J. Geophys. Res.: Atmos.
122
(
24
),
13,245–13,262
, https://doi.org/10.1002/2017JD027252 (
2017
).
75.
J. C. L.
Chan
and
K. S.
Liu
, “
Global warming and western North Pacific typhoon activity from an observational perspective
,”
J. Clim.
17
(
23
),
4590
4602
(
2004
).
76.
Y.
Liu
,
S.
Li
,
P. W.
Chan
, and
D.
Chen
, “
Empirical correction ratio and scale factor to project the extreme wind speed profile for offshore wind energy exploitation
,”
IEEE Trans. Sustainable Energy
9
(
3
),
1030
1040
(
2018
).
77.
I.
Lin
and
J. C.
Chan
, “
Recent decrease in typhoon destructive potential and global warming implications
,”
Nat. Commun.
6
(
1
),
7182
(
2015
).
78.
W. S.
Ho
and
S.
Ying
, “
An epidemiological study of 1063 hospitalized burn patients in a tertiary burns centre in Hong Kong
,”
Burns
27
(
2
),
119
123
(
2001
).
79.
E. C.
Chow
,
R. C.
Li
, and
W.
Zhou
, “
Influence of tropical cyclones on Hong Kong air quality
,”
Adv. Atmos. Sci.
35
(
9
),
1177
1188
(
2018
).
You do not currently have access to this content.