We report an experimental study on the pressure field changes caused by the transverse spinning of a cricket ball in a wind tunnel. The study focuses on modern cricket techniques where bowlers deliver the ball with near-horizontal arms. Using a wake survey rake pressure measurement system and simultaneous traversal-imaging methodology, the study investigates pressure changes at constant Reynolds number and varying spin parameters. Key findings include the expansion and intensification of low-pressure zones near the ball when spin is applied, with these zones shifting and diminishing downstream. At higher spin rates, a persistent bi-lobed low-pressure zone is observed. The results align with Magnus effect theories and provide valuable insights for improving unconventional bowling techniques in cricket.

1.
E.
Achenbach
, “
Experiments on the flow past spheres at very high Reynolds numbers
,”
J. Fluid Mech.
54
,
565
575
(
1972
).
2.
E.
Achenbach
, “
The effects of surface roughness and tunnel blockage on the flow past spheres
,”
J. Fluid Mech.
65
,
113
125
(
1974
).
3.
S.
Taneda
, “
Visual observations of the flow past a sphere at Reynolds numbers between 104 and 106
,”
J. Fluid Mech.
85
,
187
192
(
1978
).
4.
A. K.
De
and
S.
Sarkar
, “
Wake instability behind a streamwise and transversely rotating sphere
,”
Phys. Rev. Fluids
8
,
024101
(
2023
).
5.
M. B.
Salem
and
B.
Oesterle
, “
A shear flow around a spinning sphere: Numerical study at moderate Reynolds number
,”
Int. J. Multiphase Flow
24
,
563
585
(
1998
).
6.
R.
Kurose
and
S.
Komori
, “
Drag and lift forces on a rotating sphere in a linear shear flow
,”
J. Fluid Mech.
384
,
183
206
(
1999
).
7.
M.
Giacobello
,
A.
Ooi
, and
S.
Balachandar
, “
Wake structure of a transversely rotating sphere at moderate Reynolds numbers
,”
J. Fluid Mech.
621
,
103
130
(
2009
).
8.
D.
Kim
and
H.
Choi
, “
Laminar flow past a sphere rotating in the streamwise direction
,”
J. Fluid Mech.
461
,
365
386
(
2002
).
9.
D.
Kim
, “
Laminar flow past a sphere rotating in the transverse direction
,”
J. Mech. Sci. Technol.
23
,
578
589
(
2009
).
10.
J.
Dobson
,
A.
Ooi
, and
E.
Poon
, “
The flow structures of a transversely rotating sphere at high rotation rates
,”
Comput. Fluids
102
,
170
181
(
2014
).
11.
E. K.
Poon
,
A. S.
Ooi
,
M.
Giacobello
,
G.
Iaccarino
, and
D.
Chung
, “
Flow past a transversely rotating sphere at Reynolds numbers above the laminar regime
,”
J. Fluid Mech.
759
,
751
781
(
2014
).
12.
V.
Citro
,
J.
Tchoufag
,
D.
Fabre
,
F.
Giannetti
, and
P.
Luchini
, “
Linear stability and weakly nonlinear analysis of the flow past rotating spheres
,”
J. Fluid Mech.
807
,
62
86
(
2016
).
13.
M. M.
Rajamuni
,
M. C.
Thompson
, and
K.
Hourigan
, “
Vortex-induced vibration of a transversely rotating sphere
,”
J. Fluid Mech.
847
,
786
820
(
2018
).
14.
A.
Sareen
,
J.
Zhao
,
D. L.
Jacono
,
J.
Sheridan
,
K.
Hourigan
, and
M. C.
Thompson
, “
Vortex-induced vibration of a rotating sphere
,”
J. Fluid Mech.
837
,
258
292
(
2018
).
15.
A.
Chandel
and
S. P.
Das
, “
Wake of transversely rotating and translating sphere in quiescent water at low Reynolds number
,”
Acta Mech.
232
,
949
966
(
2021
).
16.
Z.
Li
,
D.
Zhang
,
Y.
Liu
, and
N.
Gao
, “
Time-averaged flow field behind a transversely spinning sphere: An experimental study
,”
Phys. Fluids
35
,
035125
(
2023
).
17.
Z.
Li
,
D.
Zhang
,
Y.
Liu
,
A.
Azma
, and
N.
Gao
, “
On the unsteady wake flow behind a sphere with large transverse-rotating speeds
,”
Phys. Fluids
35
,
105127
(
2023
).
18.
A.
Kumar
,
S. P.
Das
, and
S.
Tiwari
, “
Wall effect on the wake characteristics of a transversely rotating sphere
,”
Phys. Fluids
36
,
013611
(
2024
).
19.
B.
Pier
, “
Periodic and quasiperiodic vortex shedding in the wake of a rotating sphere
,”
J. Fluids Struct.
41
,
43
50
(
2013
).
20.
E. K.
Poon
,
A. S.
Ooi
,
M.
Giacobello
, and
R. C.
Cohen
, “
Laminar flow structures from a rotating sphere: Effect of rotating axis angle
,”
Int. J. Heat Fluid Flow
31
,
961
972
(
2010
).
21.
M. P.
Neeraj
and
S.
Tiwari
, “
Wake characteristics of a sphere performing streamwise rotary oscillations
,”
Eur. J. Mech. B/Fluids
72
,
485
500
(
2018
).
22.
M.
Lorite-Díez
and
J. I.
Jiménez-González
, “
Description of the transitional wake behind a strongly streamwise rotating sphere
,”
J. Fluid Mech.
896
,
A18
(
2020
).
23.
R. D.
Mehta
, “
Aerodynamics of sports balls
,”
Annu. Rev. Fluid Mech.
17
,
151
189
(
1985
).
24.
J. E.
Goff
, “
A review of recent research into aerodynamics of sport projectiles
,”
Sports Eng.
16
,
137
154
(
2013
).
25.
C.
Clanet
, “
Sports ballistics
,”
Annu. Rev. Fluid Mech.
47
,
455
478
(
2015
).
26.
L. J.
Briggs
, “
Effect of spin and speed on the lateral deflection (curve) of a baseball; and the Magnus effect for smooth spheres
,”
Am. J. Phys.
27
,
589
596
(
1959
).
27.
Y.
Tsuji
,
Y.
Morikawa
, and
O.
Mizuno
, “
Experimental measurement of the Magnus force on a rotating sphere at low Reynolds numbers
,”
J. Fluids Eng.
107
,
484
488
(
1985
).
28.
W.
Johnson
, “
The Magnus effect—Early investigations and a question of priority
,”
Int. J. Mech. Sci.
28
,
859
872
(
1986
).
29.
M. S.
Chong
,
A. E.
Perry
, and
B. J.
Cantwell
, “
A general classification of three-dimensional flow fields
,”
Phys. Fluids A: Fluid Dyn.
2
,
765
777
(
1990
).
30.
G.
Dupeux
,
A. L.
Goff
,
D.
Quéré
, and
C.
Clanet
, “
The spinning ball spiral
,”
New J. Phys.
12
,
093004
(
2010
).
31.
J.
Kim
,
H.
Choi
,
H.
Park
, and
J. Y.
Yoo
, “
Inverse Magnus effect on a rotating sphere: When and why
,”
J. Fluid Mech.
754
,
R2
(
2014
).
32.
M.
Muto
,
M.
Tsubokura
, and
N.
Oshima
, “
Negative Magnus lift on a rotating sphere at around the critical Reynolds number
,”
Phys. Fluids
24
,
014102
(
2012
).
33.
T.
Kray
,
J.
Franke
, and
W.
Frank
, “
Magnus effect on a rotating sphere at high Reynolds numbers
,”
J. Wind Eng. Ind. Aerodyn.
110
,
1
9
(
2012
).
34.
G.
Robinson
and
I.
Robinson
, “
The motion of an arbitrarily rotating spherical projectile and its application to ball games
,”
Phys. Scr.
88
,
018101
(
2013
).
35.
Q.
Zhou
and
L.-S.
Fan
, “
Direct numerical simulation of low-Reynolds-number flow past arrays of rotating spheres
,”
J. Fluid Mech.
765
,
396
423
(
2015
).
36.
S.
Nguyen
,
M.
Corey
,
W.
Chan
,
E. S.
Greenhalgh
, and
J. M. R.
Graham
, “
Experimental determination of the aerodynamic coefficients of spinning bodies
,”
Aeronaut. J.
123
,
678
705
(
2019
).
37.
H.
Dehgan
,
M. H.
Nobakhti
,
E.
Esmaeilzadeh
,
M.
Khayat
, and
A. R.
Khosroshahi
, “
An experimental study of hydrodynamic behavior of rotating spherical particles in a quiescent viscous fluid
,”
Eur. Phys. J. Plus
136
,
967
(
2021
).
38.
K.
Shah
,
R.
Shakya
, and
S.
Mittal
, “
Aerodynamic forces on projectiles used in various sports
,”
Phys. Fluids
31
,
015106
(
2019
).
39.
J. E.
Mencke
,
M.
Salewski
,
O. L.
Trinhammer
, and
A. T.
Adler
, “
Flight and bounce of spinning sports balls
,”
Am. J. Phys.
88
,
934
947
(
2020
).
40.
S.
Barber
,
S.
Chin
, and
M.
Carré
, “
Sports ball aerodynamics: A numerical study of the erratic motion of soccer balls
,”
Comput. Fluids
38
,
1091
1100
(
2009
).
41.
T.
Kray
,
J.
Franke
, and
W.
Frank
, “
Magnus effect on a rotating soccer ball at high Reynolds numbers
,”
J. Wind Eng. Ind. Aerodyn.
124
,
46
53
(
2014
).
42.
S.
Hong
,
R.
Nobori
,
K.
Sakamoto
,
M.
Koido
,
M.
Nakayama
, and
T.
Asai
, “
Experiment of aerodynamic force on a rotating soccer ball
,”
Procedia Eng.
147
,
56
61
(
2016
).
43.
S.
Hong
and
T.
Asai
, “
Effect of panel shape of soccer ball on its flight characteristics
,”
Sci. Rep.
4
,
5068
(
2014
).
44.
S.
Hong
,
T.
Asai
, and
K.
Seo
, “
Visualization of air flow around soccer ball using a particle image velocimetry
,”
Sci. Rep.
5
,
15108
(
2015
).
45.
T.
Asai
and
S.
Hong
, “
Aerodynamics of the newly approved football for the English premier league 2020–21 season
,”
Sci. Rep.
11
,
9578
(
2021
).
46.
J.
Li
,
M.
Tsubokura
, and
M.
Tsunoda
, “
Numerical investigation of the flow past a rotating golf ball and its comparison with a rotating smooth sphere
,”
Flow. Turbul. Combust.
99
,
837
864
(
2017
).
47.
J.
Crabill
,
F.
Witherden
, and
A.
Jameson
, “
High-order computational fluid dynamics simulations of a spinning golf ball
,”
Sports Eng.
22
,
9
(
2019
).
48.
B.
Lyu
,
J.
Kensrud
, and
L.
Smith
, “
The reverse Magnus effect in golf balls
,”
Sports Eng.
23
,
3
(
2020
).
49.
N.
Sakib
and
B. L.
Smith
, “
Study of the reverse Magnus effect on a golf ball and a smooth ball moving through still air
,”
Exp. Fluids
61
,
115
(
2020
).
50.
S. R.
Goodwill
,
S. B.
Chin
, and
S. J.
Haake
, “
Aerodynamics of spinning and non-spinning tennis balls
,”
J. Wind Eng. Ind. Aerodyn.
92
,
935
958
(
2004
).
51.
T.
Miyazaki
,
W.
Sakai
,
T.
Komatsu
,
N.
Takahashi
, and
R.
Himeno
, “
Lift crisis of a spinning table tennis ball
,”
Eur. J. Phys.
38
,
024001
(
2017
).
52.
D. M.
Rooney
,
P.
Mortimer
,
F. A.
Tricouros
, and
J. C.
Vaccaro
, “
Wake flow measurements behind rotating smooth spheres and baseballs near critical Reynolds numbers
,”
J. Fluids Eng.
144
,
031303
(
2022
).
53.
N. G.
Barton
and
J. T.
Stuart
, “
On the swing of a cricket ball in flight
,”
Proc. R. Soc. London A Math. Phys. Sci.
379
,
109
131
(
1982
).
54.
R. D.
Mehta
,
K.
Bentley
,
M.
Proudlove
, and
P.
Varty
, “
Factors affecting cricket ball swing
,”
Nature
303
,
787
788
(
1983
).
55.
R. D.
Mehta
, “
An overview of cricket ball swing
,”
Sports Eng.
8
,
181
192
(
2005
).
56.
R.
Deshpande
,
R.
Shakya
, and
S.
Mittal
, “
The role of the seam in the swing of a cricket ball
,”
J. Fluid Mech.
851
,
50
82
(
2018
).
57.
A.
Parekh
,
D.
Chaplot
, and
S.
Mittal
, “
Swing and reverse swing of a cricket ball: Laminar separation bubble, secondary vortex and wing-tip-like vortices
,”
J. Fluid Mech.
983
,
A23
(
2024
).
58.
R. W.
Jackson
,
E.
Harberd
,
G. D.
Lock
, and
J. A.
Scobie
, “
Investigation of reverse swing and Magnus effect on a cricket ball using particle image velocimetry
,”
Appl. Sci.
10
,
7990
(
2020
).
59.
K.
Shah
and
S.
Mittal
, “
Is a baseball like knuckleball possible in cricket?
,”
Flow
3
,
E16
(
2023
).
60.
A. B.
Faazil
,
A. M.
Eapen
, and
K. S.
Siddharth
, “
An anomalous method of using a camera in determining the velocity distribution within a boundary layer
,”
Flow Meas. Instrum.
90
,
102334
(
2023
).
61.
R. D.
Mehta
, “
Fluid mechanics of cricket ball swing
,” in
19th Australasian Fluid Mechanics Conference
(
AFMS
,
2014
).
62.
J. J.
Maule
,
R.
Maguire
,
M. A.
Timmis
,
O. R.
Runswick
,
L.
Wilkins
,
D. L.
Mann
,
S. J.
Dain
,
J. M.
Bosten
, and
P. M.
Allen
, “
Difficult at dusk? illuminating the debate on cricket ball visibility
,”
J. Sci. Med. Sport
27
,
408
(
2024
).
You do not currently have access to this content.