Severe weather conditions during windstorms may result in unavailability of traditional displacement monitoring techniques for civil structures such as supertall buildings. To address this challenge, this paper develops a long short-term memory model with a physics-informed loss function to initially estimate the missing strain responses of structures during typhoons. Subsequently, the missing or unmeasured displacements of structures during typhoons are reconstructed using the estimated missing strain responses and limited field measurements (i.e., acceleration and strain responses), employing a displacement reconstruction method. The proposed methodology is validated using field measurements on a 600 m supertall building during Typhoon Lionrock, demonstrating the effectiveness in accurately reconstructing the missing displacements of the supertall building under typhoon conditions. Finally, the missing displacements of the supertall building during Super Typhoon Saola are reconstructed, and the accuracy of the reconstructed displacements is verified. This paper aims to offer a novel method for displacement reconstructions of supertall buildings during windstorms based on limited monitoring information, enabling real-time structural integrity monitoring while reducing maintenance costs and downtime.

1.
Choe
,
D. E.
,
Kim
,
H. C.
, and
Kim
,
M. H.
, “
Sequence-based modeling of deep learning with LSTM and GRU networks for structural damage detection of floating offshore wind turbine blades
,”
Renewable Energy
174
,
218
235
(
2021
).
2.
Choi
,
J.
,
Ma
,
Z.
,
Kim
,
K.
, and
Sohn
,
H.
, “
Continuous structural displacement monitoring using accelerometer, vision, and infrared (IR) cameras
,”
Sensors
23
(
11
),
5241
(
2023
).
3.
Gers
,
F. A.
,
Schmidhuber
,
J.
, and
Cummins
,
F.
, “
Learning to forget: Continual prediction with LSTM
,”
Neural Comput.
12
(
10
),
2451
2471
(
2000
).
4.
Huang
,
J. X.
,
Li
,
Q. S.
, and
Han
,
X. L.
, “
Recovery of missing field measured wind pressures on a supertall building based on correlation analysis and machine learning
,”
J. Wind Eng. Ind. Aerodyn.
231
,
105237
(
2022
).
5.
Kafle
,
B.
,
Zhang
,
L. H.
,
Mendis
,
P.
,
Herath
,
N.
,
Maizuar
,
M.
,
Duffield
,
C.
, and
Thompson
,
R. G.
, “
Monitoring the dynamic behavior of the Merlynston creek bridge using interferometric radar sensors and finite element modeling
,”
Int. J. Appl. Mech.
09
(
1
),
1750003
(
2017
).
6.
Li
,
Q. S.
,
He
,
Y. H.
,
Zhou
,
K.
,
Han
,
X. L.
,
He
,
Y. C.
, and
Shu
,
Z. R.
, “
Structural health monitoring for a 600 m high skyscraper
,”
Struct. Des. Tall Build.
27
(
12
),
e1490
(
2018
).
7.
Li
,
X.
and
Li
,
Q. S.
, “
Monitoring of wind effects on a super-tall building during multiple typhoons and validation of wind tunnel testing techniques
,”
Struct. Infrastruct. Eng.
17
(
11
),
1535
1551
(
2021
).
8.
Liu
,
D. W.
,
Tang
,
Z. Y.
,
B
,
Y. Q.
, and
Li
,
H.
, “
Machine‐learning‐based methods for output‐only structural modal identification
,”
Struct. Control Health Monit.
28
(
12
),
e2843
(
2021
).
9.
Maizuar
,
M.
,
Zhang
,
L. H.
,
Miramini
,
S.
,
Mendis
,
P.
, and
Thompson
,
R. G.
, “
Detecting structural damage to bridge girders using radar interferometry and computational modelling
,”
Struct. Control Health Monit.
24
(
10
),
e1985
(
2017
).
10.
Moreu
,
F.
,
Jo
,
H.
,
Li
,
J.
,
Kim
,
R. E.
,
Cho
,
S.
,
Kimmle
,
A.
,
Scola
,
S.
,
Le
,
H.
,
Spencer
,
B. F.
, and
LaFave
,
J. M.
, “
Dynamic assessment of timber railroad bridges using displacements
,”
J. Bridge Eng.
20
(
10
),
04014114
(
2015
).
11.
Ni
,
P.
,
Li
,
Y.
,
Sun
,
L.
, and
Wang
,
A.
, “
Traffic-induced bridge displacement reconstruction using a physics-informed convolutional neural network
,”
Comput. Struct.
271
,
106863
(
2022
).
12.
Ni
,
Y. Q.
,
Wang
,
Y. W.
,
Liao
,
W. Y.
, and
Chen
,
W. H.
, “
A vision-based system for long-distance remote monitoring of dynamic displacement: Experimental verification on a supertall structure
,”
Smart Struct. Syst.
24
(
6
),
769
781
(
2019
).
13.
Park
,
H. S.
,
Sohn
,
H. G.
,
Kim
,
I. S.
, and
Park
,
J. H.
, “
Application of GPS to monitoring of wind‐induced responses of high‐rise buildings
,”
Struct. Des. Tall Build.
17
(
1
),
117
132
(
2008
).
14.
Sutton
,
M. A.
,
Orteu
,
J. J.
, and
Schreier
,
H.
,
Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications
(
Springer Science & Business Media
,
2009
).
15.
Vadyala
,
S. R.
,
Betgeri
,
S. N.
,
Matthews
,
J. C.
, and
Matthews
,
E.
, “
A review of physics-based machine learning in civil engineering
,”
Results Eng.
13
,
100316
(
2022
).
16.
Welch
,
P.
, “
The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms
,”
IEEE Trans. Audio Electroacoust.
15
(
2
),
70
73
(
1967
).
17.
Xia
,
Y.
,
Zhang
,
P.
,
Ni
,
Y. Q.
, and
Zhu
,
H. P.
, “
Deformation monitoring of a super-tall structure using real-time strain data
,”
Eng. Struct.
67
,
29
38
(
2014
).
18.
Xiong
,
H. B.
,
Cao
,
J. X.
, and
Zhang
,
F. L.
, “
Inclinometer-based method to monitor displacement of high-rise buildings
,”
Struct. Monit. Maint.
5
(
1
),
111
127
(
2018
).
19.
Yang
,
Y. C.
,
Sanchez
,
L.
,
Zhang
,
H. Y.
,
Roeder
,
A.
,
Bowlan
,
J.
,
Crochet
,
J.
,
Farrar
,
C.
, and
Mascareñas
,
D.
, “
Estimation of full‐field, full‐order experimental modal model of cable vibration from digital video measurements with physics‐guided unsupervised machine learning and computer vision
,”
Struct. Control Health Monit.
26
(
6
),
e2358
(
2019
).
20.
Zhou
,
Q.
,
Li
,
Q. S.
,
Han
,
X. L.
,
Wan
,
J. W.
, and
Xu
,
K.
, “
Horizontal displacement estimation of high-rise structures by fusing strain and acceleration measurements
,”
J. Build. Eng.
57
,
104964
(
2022
).
21.
Zhou
,
Q.
,
Li
,
Q. S.
,
Han
,
X. L.
,
Wan
,
J. W.
, and
Xu
,
K.
, “
Displacement estimation of a skyscraper during Super Typhoon Mangkhut based on limited measurements of accelerations and strains
,”
J. Struct. Eng.
149
(
10
),
04023142
(
2023
).
22.
Zhou
,
Y.
,
Meng
,
S.
,
Lou
,
Y.
, and
Kong
,
Q.
, “
Physics-informed deep learning-based real-time structural response prediction method
,”
Engineering
35
,
140
157
(
2024
).
You do not currently have access to this content.