A Fourier Bessel series type expansion formula is used to investigate the interaction of surface gravity wave with two arc-shaped porous breakwaters that shield a circular floating flexible structure from wave action. The flexural gravity waves result from the interaction between the surface gravity waves and the circular floating structure. Additionally, when the floating structure encounters lateral compression force, flexural gravity wave blocking occurs. Moreover, the floating structure is triggered by the interaction of three unique wave modes for every wave frequency within the confines of the blocking frequencies. The two arc-shaped permeable breakwaters significantly reduce the wave force acting on the floating structure as compared to situations where there is just one arc wall or no breakwater at all. Resonant peaks in the wave forces arising within the impermeable breakwaters diminish with the introduction of structural permeability. The hydrodynamic load on the floating structure and the pair of porous arc breakwaters exhibit removable discontinuities near the blocking frequency. Surface plots illustrate the irregular distribution of plate deflection at certain angular frequencies. Contour plots are used to ascertain the spatial configuration of fluid flow around a structure. Furthermore, several wave and structural parameters, including the position of the breakwaters and their structural dimensions, breakwater porosity, annular radius, compressive force, incident angle, and wave forces experienced by the floating structure, contribute to mitigating wave-induced structural response and wave forces experienced by the floating structure. Time-dependent simulation of the surface displacement by the incident wave demonstrates the flow features.

1.
G.
Gussmann
and
J.
Hinkel
, “
A framework for assessing the potential effectiveness of adaptation policies: Coastal risks and sea-level rise in the Maldives
,”
Environ. Sci. Policy
115
,
35
42
(
2021
).
2.
A.
Jennath
,
A.
Krishnan
,
S. P.
Kumar
, and
P. K.
Bhaskaran
, “
Climate projections of sea level rise and associated coastal inundation in atoll islands: Case of Lakshadweep islands in the Arabian sea
,”
Reg. Stud. Mar. Sci.
44
,
101793
(
2021
).
3.
H. P.
Nguyen
,
C. M.
Wang
,
Z. Y.
Tay
, and
V. H.
Luong
, “
Wave energy converter and large floating platform integration: A review
,”
Ocean Eng.
213
,
107768
(
2020
).
4.
V.
Aryai
,
R.
Abbassi
,
N.
Abdussamie
,
F.
Salehi
,
V.
Garaniya
,
M.
Asadnia
,
A.-A.
Baksh
,
I.
Penesis
,
H.
Karampour
,
S.
Draper
,
A.
Magee
,
A. K.
Keng
,
C.
Shearer
,
S.
Sivandran
,
L. K.
Yew
,
D.
Cook
,
M.
Underwood
,
A.
Martini
,
K.
Heasman
,
J.
Abrahams
, and
C. M.
Wang
, “
Reliability of multi-purpose offshore-facilities: Present status and future direction in Australia
,”
Process Saf. Environ. Prot.
148
,
437
461
(
2021
).
5.
L.
Li
,
C.
Ruzzo
,
M.
Collu
,
Y.
Gao
,
G.
Failla
, and
F.
Arena
, “
Analysis of the coupled dynamic response of an offshore floating multi-purpose platform for the blue economy
,”
Ocean Eng.
217
,
107943
(
2020
).
6.
C. M.
Wang
and
Z. Y.
Tay
, “
Very large floating structures: Applications, research and development
,”
Procedia Eng.
14
,
62
72
(
2011
).
7.
M. L.
Pardo
,
G.
Iglesias
, and
L.
Carral
, “
A review of very large floating structures (VLFS) for coastal and offshore uses
,”
Ocean Eng.
109
,
677
690
(
2015
).
8.
T.
Sahoo
,
Mathematical Techniques for Wave Interaction with Flexible Structures
(
CRC Press
,
Boca Raton, FL
,
2012
).
9.
M.
Meylan
and
V. A.
Squire
, “
Response of a circular ice floe to ocean waves
,”
J. Geophys. Res.
101
,
8869
8884
, https://doi.org/10.1029/95JC03706 (
1996
).
10.
M. A.
Peter
,
M. H.
Meylan
, and
H.
Chung
, “
Wave scattering by a circular elastic plate in water of finite depth: A closed form solution
,”
Int. J. Offshore Polar Eng.
14
,
081
(
2004
).
11.
A. I.
Andrianov
and
A. J.
Hermans
, “
Hydroelasticity of a circular plate on water of finite or infinite depth
,”
J. Fluids Struct.
20
,
719
733
(
2005
).
12.
R.
Mondal
,
S.
Mandal
, and
T.
Sahoo
, “
Surface gravity wave interaction with circular flexible structures
,”
Ocean Eng.
88
,
446
462
(
2014
).
13.
S. A.
Selvan
,
H.
Behera
, and
T.
Sahoo
, “
Reduction of hydroelastic response of a flexible floating structure by an annular flexible permeable membrane
,”
J. Eng. Math.
118
,
73
99
(
2019
).
14.
S.
Michele
,
S.
Zheng
, and
D.
Greaves
, “
Wave energy extraction from a floating flexible circular plate
,”
Ocean Eng.
245
,
110275
(
2022
).
15.
C. C.
Tsai
and
H.
Behera
, “
Wave dynamics around a floating circular flexible plate over a permeable bed
,”
J. Offshore Mech. Arct. Eng.
146
,
041203
(
2024
).
16.
M. H.
Kim
and
S. T.
Kee
, “
Flexible-membrane wave barrier I: Analytic and numerical solutions
,”
J. Waterw., Port, Coastal, Ocean Eng.
122
,
46
53
(
1996
).
17.
I. H.
Cho
,
S. T.
Kee
, and
M. H.
Kim
, “
The performance of flexible-membrane wave barriers in oblique incident waves
,”
Appl. Ocean Res.
19
,
171
182
(
1997
).
18.
R.
Porter
and
D. V.
Evans
, “
Wave scattering by periodic arrays of breakwaters
,”
Wave Motion
23
,
95
120
(
1996
).
19.
K.
Vijay
,
V.
Venkateswarlu
, and
T.
Sahoo
, “
Bragg scattering of surface gravity waves by an array of submerged breakwaters and a floating dock
,”
Wave Motion
106
,
102807
(
2021
).
20.
R.
Mondal
and
M. M.
Alam
, “
Water wave scattering by an array of rectangular breakwaters on a step bottom topography
,”
Ocean Eng.
169
,
359
369
(
2018
).
21.
R.
Gayathri
and
H.
Behera
, “
Mitigation of wave force on a circular flexible plate by a surface-piercing flexible porous barrier
,”
Proc. Inst. Mech. Eng., Part M
235
,
586
599
(
2021
).
22.
S.
Mandal
,
N.
Datta
, and
T.
Sahoo
, “
Hydroelastic analysis of surface wave interaction with concentric porous and flexible cylinder systems
,”
J. Fluids Struct.
42
,
437
455
(
2013
).
23.
J.
Miao
,
Z.
Guo
, and
Z.
Zhai
, “
Short crested wave–current interaction with a cylinder and two concentric asymmetric arc-shaped walls
,”
Wave Motion
124
,
103250
(
2024
).
24.
Z.
Zhai
,
X.
Li
, and
L.
Yang
, “
Analytical approach to the solution of short-crested wave interaction with v-shaped and arc-shaped breakwaters
,”
Phys. Fluids
34
,
022112
(
2022
).
25.
Y. C.
Chu
,
J. S.
Cheng
,
J. Q.
Wang
,
Z. G.
Li
, and
K. B.
Jiang
, “
Hydrodynamic performance of the arc-shaped bottom-mounted breakwater
,”
China Ocean Eng.
28
,
749
760
(
2014
).
26.
J.
Duan
,
J.
Cheng
,
J.
Wang
, and
J.
Wang
, “
Wave diffraction on arc-shaped floating perforated breakwaters
,”
China Ocean Eng.
26
,
305
316
(
2012
).
27.
J.
Miao
,
Q.
Chen
,
Z.
Guo
, and
Z.
Zhai
, “
Mathematical model of wave diffraction for multiple concentric segmented arc-shaped breakwaters
,”
Ain Shams Eng. J.
15
,
102577
(
2024
).
28.
Y.
Wang
and
S.
Dong
, “
Analytical investigation on a wave energy converter-dual-arc breakwater integration system
,”
Energy
285
,
129373
(
2023
).
29.
Z.
Zhai
,
S.
Zheng
, and
D.
Wan
, “
Interaction between solitary waves and a combined structure of two concentric asymmetric porous arc walls
,”
Phys. Fluids
34
,
042103
(
2022
).
30.
Z.
Zhai
,
H.
Li
,
A.
Zhang
,
S.
An
, and
K.
Wang
, “
Analytical modelling of water wave diffraction by a bottom-mounted surface-piercing concentric dual-arc porous thin wall
,”
Ocean Eng.
236
,
109485
(
2021
).
31.
S.
Das
,
T.
Sahoo
, and
M. H.
Meylan
, “
Dynamics of flexural gravity waves: From sea ice to Hawking radiation and analogue gravity
,”
Proc. R. Soc. A
474
,
20170223
(
2018
).
32.
S.
Das
,
P.
Kar
,
T.
Sahoo
, and
M. H.
Meylan
, “
Flexural-gravity wave motion in the presence of shear current: Wave blocking and negative energy waves
,”
Phys. Fluids
30
,
106606
(
2018
).
33.
S.
Das
,
T.
Sahoo
, and
M. H.
Meylan
, “
Flexural-gravity wave dynamics in two-layer fluid: Blocking and dead water analogue
,”
J. Fluid Mech.
854
,
121
145
(
2018
).
34.
S.
Boral
,
S.
Nath
,
T.
Sahoo
, and
M. H.
Meylan
, “
The role of viscoelastic foundation on flexural gravity wave blocking in shallow water
,”
AIP Adv.
11
,
065317
(
2021
).
35.
S.
Boral
,
M. H.
Meylan
,
T.
Sahoo
, and
B. Y.
Ni
, “
Time-dependent flexural gravity wave scattering due to uneven bottom in the paradigm of blocking dynamics
,”
Phys. Fluids
35
,
116603
(
2023
).
36.
P.
Negi
,
P.
Kar
,
T.
Sahoo
, and
M. H.
Meylan
, “
Flexural gravity wave interaction with an articulated heterogeneous plate within the paradigm of blocking dynamics
,”
Phys. Fluids
35
,
086602
(
2023
).
37.
P.
Negi
,
S.
Boral
, and
T.
Sahoo
, “
Scattering of oblique waves by a semi-infinite floating elastic plate within the framework of wave blocking
,”
J. Eng. Math.
135
,
1
(
2022
).
38.
N.
Bisht
,
S.
Boral
,
T.
Sahoo
, and
M. H.
Meylan
, “
Triad resonance of flexural gravity waves in the presence of shear current with constant vorticity
,”
Phys. Fluids
35
,
116605
(
2023
).
39.
X.
Yu
, “
Diffraction of water waves by porous breakwaters
,”
J. Waterw., Port, Coastal, Ocean Eng.
121
,
275
282
(
1995
).
40.
T. L.
Yip
,
T.
Sahoo
, and
A. T.
Chwang
, “
Trapping of surface waves by porous and flexible structures
,”
Wave Motion
35
,
41
54
(
2002
).
41.
A.
Chanda
,
S. C.
Barman
,
T.
Sahoo
, and
M. H.
Meylan
, “
Flexural-gravity wave scattering by an array of bottom-standing partial porous barriers in the framework of Bragg resonance and blocking dynamics
,”
Phys. Fluids
36
,
012129
(
2024
).
42.
R.
Gayen
and
S.
Gupta
, “
Scattering of surface waves by a pair of asymmetric thin elliptic arc shaped plates with variable permeability
,”
Eur. J. Mech. B
80
,
122
132
(
2020
).
43.
A. I.
Andrianov
and
A. J.
Hermans
, “
The influence of water depth on the hydroelastic response of a very large floating platform
,”
Mar. Struct.
16
,
355
371
(
2003
).
44.
S. C.
Mohapatra
,
R.
Ghoshal
, and
T.
Sahoo
, “
Effect of compression on wave diffraction by a floating elastic plate
,”
J. Fluids Struct.
36
,
124
135
(
2013
).
45.
M. H.
Meylan
, “
Time-dependent motion of a floating circular elastic plate
,”
Fluids
6
,
29
(
2021
).
46.
D. Z.
Ning
,
X. L.
Zhao
,
B.
Teng
, and
L.
Johanning
, “
Wave diffraction from a truncated cylinder with an upper porous sidewall and an inner column
,”
Ocean Eng.
130
,
471
481
(
2017
).
47.
A.
Sarkar
and
S. N.
Bora
, “
Hydrodynamic forces due to water wave interaction with a bottom-mounted surface-piercing compound porous cylinder
,”
Ocean Eng.
171
,
59
70
(
2019
).
48.
P.
Kar
,
T.
Sahoo
, and
M. H.
Meylan
, “
Bragg scattering of long waves by an array of floating flexible plates in presence of multiple submerged trenches
,”
Phys. Fluids
32
,
096603
(
2020
).
You do not currently have access to this content.