Inertial waves occur naturally in rotating fluids such as the Sun and the Earth's atmosphere. Rossby waves in the Sun have the potential to shed fresh light on interior turbulence and convection that prior seismic methods, reliant on sound waves, have been unable to accomplish. Here, we utilize ∼13 years of observational products taken by the space-based helioseismic and magnetic imager, onboard the solar dynamics observatory, to characterize solar equatorial Rossby waves. By examining maps of motions at the surface using two different methods, we are able to identify Rossby modes up to azimuthal order m = 30, approximately up to twice the spatial wavenumber limit of previous studies. The dispersion relation of these modes departs significantly from the classical two-dimensional Rossby-Haurwitz description. A parameter study of the effect of superadiabaticity and viscous diffusion on these inertial modes indicates that each parameter plays a role in influencing both the frequencies and linewidths of high m modes. Using the Rhines-scale relation, we constrain the root mean square amplitude of turbulent convection more tightly to 2 m/s, adding more evidence to the paradigm of weakly convective amplitudes at large scales.

1.
C.-G.
Rossby
, “
Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action
,”
J. Mar. Res.
2
,
38
55
(
1939
).
2.
D. B.
Chelton
and
M. G.
Schlax
, “
Global observations of oceanic Rossby waves
,”
Science
272
,
234
238
(
1996
).
3.
M.
Allison
, “
Planetary waves in Jupiter's equatorial atmosphere
,”
Icarus
83
,
282
307
(
1990
).
4.
T. V.
Zaqarashvili
,
M.
Albekioni
,
J. L.
Ballester
,
Y.
Bekki
,
L.
Biancofiore
,
A. C.
Birch
,
M.
Dikpati
,
L.
Gizon
,
E.
Gurgenashvili
,
E.
Heifetz
,
A. F.
Lanza
,
S. W.
McIntosh
,
L.
Ofman
,
R.
Oliver
,
B.
Proxauf
,
O. M.
Umurhan
, and
R.
Yellin-Bergovoy
, “
Rossby waves in astrophysics
,”
Space Sci. Rev.
217
,
15
(
2021
).
5.
J.
Schumacher
and
K. R.
Sreenivasan
, “
Colloquium: Unusual dynamics of convection in the Sun
,”
Rev. Mod. Phys.
92
,
041001
(
2020
).
6.
E.
Böhm-Vitense
, “
Über die Wasserstoffkonvektionszone in Sternen verschiedener Effektivtemperaturen und Leuchtkräfte. Mit 5 Textabbildungen
,”
Z. Astrophys.
46
,
108
(
1958
).
7.
M. S.
Miesch
,
N. A.
Featherstone
,
M.
Rempel
, and
R.
Trampedach
, “
On the amplitude of convective velocities in the deep solar interior
,”
Astrophys. J.
757
,
128
(
2012
).
8.
S.
Hanasoge
,
L.
Gizon
, and
K. R.
Sreenivasan
, “
Seismic sounding of convection in the Sun
,”
Annu. Rev. Fluid Mech.
48
,
191
217
(
2016
).
9.
M. S.
Miesch
,
A. S.
Brun
,
M. L.
DeRosa
, and
J.
Toomre
, “
Structure and evolution of giant cells in global models of solar convection
,”
Astrophys. J.
673
,
557
(
2008
).
10.
S. M.
Hanasoge
,
T. L.
Duvall
, and
K. R.
Sreenivasan
, “
Anomalously weak solar convection
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
11928
11932
(
2012
).
11.
B.
Proxauf
, “
Observations of large-scale solar flows
,” Ph.D. thesis (
University of Göttingen
,
2020
).
12.
H.
Hotta
,
Y.
Bekki
,
L.
Gizon
,
Q.
Noraz
, and
M.
Rast
, “
Dynamics of large-scale solar flows
,”
Space Sci. Rev.
219
,
77
(
2023
).
13.
J.
Christensen-Dalsgaard
,
W.
Dappen
,
S. V.
Ajukov
,
E. R.
Anderson
,
H. M.
Antia
,
S.
Basu
,
V. A.
Baturin
,
G.
Berthomieu
,
B.
Chaboyer
,
S. M.
Chitre
,
A. N.
Cox
,
P.
Demarque
,
J.
Donatowicz
,
W. A.
Dziembowski
,
M.
Gabriel
,
D. O.
Gough
,
D. B.
Guenther
,
J. A.
Guzik
,
J. W.
Harvey
,
F.
Hill
,
G.
Houdek
,
C. A.
Iglesias
,
A. G.
Kosovichev
,
J. W.
Leibacher
,
P.
Morel
,
C. R.
Proffitt
,
J.
Provost
,
J.
Reiter
,
E. J.
Rhodes
, Jr.
,
F. J.
Rogers
,
I. W.
Roxburgh
,
M. J.
Thompson
, and
R. K.
Ulrich
, “
The current state of solar modeling
,”
Science
272
,
1286
1292
(
1996
).
14.
C. S.
Rosenthal
,
J.
Christensen-Dalsgaard
,
Å.
Nordlund
,
R. F.
Stein
, and
R.
Trampedach
, “
Convective contributions to the frequencies of solar oscillations
,”
Astron. Astrophys.
351
,
689
700
(
1999
).
15.
R. B.
Leighton
,
R. W.
Noyes
, and
G. W.
Simon
, “
Velocity fields in the solar atmosphere. I. Preliminary report
,”
Astrophys. J.
135
,
474
(
1962
).
16.
S.
Basu
, “
Global seismology of the Sun
,”
Living Rev. Sol. Phys.
13
,
2
(
2016
). [astro-ph.SR].
17.
J.
Christensen-Dalsgaard
,
T. L.
Duvall
,
D. O.
Gough
,
J. W.
Harvey
, and
J. E.
Rhodes
, Jr.
, “
Speed of sound in the solar interior
,”
Nature
315
,
378
382
(
1985
).
18.
J.
Schou
,
H. M.
Antia
,
S.
Basu
,
R. S.
Bogart
,
R. I.
Bush
,
S. M.
Chitre
,
J.
Christensen-Dalsgaard
,
M. P.
Di Mauro
,
W. A.
Dziembowski
,
A.
Eff-Darwich
,
D. O.
Gough
,
D. A.
Haber
,
J. T.
Hoeksema
,
R.
Howe
,
S. G.
Korzennik
,
A. G.
Kosovichev
,
R. M.
Larsen
,
F. P.
Pijpers
,
P. H.
Scherrer
,
T.
Sekii
,
T. D.
Tarbell
,
A. M.
Title
,
M. J.
Thompson
, and
J.
Toomre
, “
Helioseismic studies of differential rotation in the solar envelope by the solar oscillations investigation using the Michelson Doppler Imager
,”
Astrophys. J.
505
,
390
417
(
1998
).
19.
L.
Gizon
and
A. C.
Birch
, “
Local helioseismology
,”
Living Rev. Solar Phys.
2
,
6
(
2005
).
20.
B.
Löptien
,
L.
Gizon
,
A. C.
Birch
,
J.
Schou
,
B.
Proxauf
,
T. L.
Duvall
,
R. S.
Bogart
, and
U. R.
Christensen
, “
Global-scale equatorial Rossby waves as an essential component of solar internal dynamics
,”
Nat. Astron.
2
,
568
573
(
2018
).
21.
L. J.
November
and
G. W.
Simon
, “
Precise proper-motion measurement of solar granulation
,”
Astrophys. J.
333
,
427
(
1988
).
22.
Z.-C.
Liang
,
L.
Gizon
,
A. C.
Birch
, and
T. L.
Duvall
, “
Time-distance helioseismology of solar Rossby waves
,”
Astron. Astrophys.
626
,
A3
(
2019
).
23.
S.
Hanasoge
and
K.
Mandal
, “
Detection of Rossby waves in the Sun using normal-mode coupling
,”
Astrophys. J. Lett.
871
,
L32
(
2019
).
24.
C. S.
Hanson
,
L.
Gizon
, and
Z.-C.
Liang
, “
Solar Rossby waves observed in GONG++ ring-diagram flow maps
,”
Astron. Astrophys.
635
,
A109
(
2020
).
25.
B.
Proxauf
,
L.
Gizon
,
B.
Löptien
,
J.
Schou
,
A. C.
Birch
, and
R. S.
Bogart
, “
Exploring the latitude and depth dependence of solar Rossby waves using ring-diagram analysis
,”
Astron. Astrophys.
634
,
A44
(
2020
).
26.
L.
Gizon
,
R. H.
Cameron
,
Y.
Bekki
,
A. C.
Birch
,
R. S.
Bogart
,
A.
Sacha Brun
,
C.
Damiani
,
D.
Fournier
,
L.
Hyest
,
K.
Jain
,
B.
Lekshmi
,
Z.-C.
Liang
, and
B.
Proxauf
, “
Solar inertial modes: Observations, identification, and diagnostic promise
,”
Astron. Astrophys.
652
,
L6
(
2021
).
27.
C. S.
Hanson
,
S.
Hanasoge
, and
K. R.
Sreenivasan
, “
Discovery of high-frequency retrograde vorticity waves in the Sun
,”
Nat. Astron.
6
,
708
(
2022
).
28.
M.
Waidele
and
J.
Zhao
, “
Observed power and frequency variations of solar Rossby waves with solar cycles
,”
Astrophys. J. Lett.
954
,
L26
(
2023
).
29.
J.
Bhattacharya
,
C. S.
Hanson
,
S. M.
Hanasoge
, and
K. R.
Sreenivasan
, “
A linear model for inertial modes in a differentially rotating Sun
,” arXiv:2308.12766 (
2023
).
30.
P. B.
Rhines
, “
Waves and turbulence on a beta-plane
,”
J. Fluid Mech.
69
,
417
443
(
1975
).
31.
Y.
Bekki
,
R. H.
Cameron
, and
L.
Gizon
, “
Theory of solar oscillations in the inertial frequency range: Linear modes of the convection zone
,”
Astron. Astrophys.
662
,
A16
(
2022
).
32.
J.
Bhattacharya
and
S. M.
Hanasoge
, “
A spectral solver for solar inertial waves
,”
Astrophys. J. Suppl. Ser.
264
,
21
(
2023
), arXiv:2211.03323 [astro-ph.SR].
33.
L.
Gizon
,
R. H.
Cameron
,
M.
Pourabdian
,
Z.-C.
Liang
,
D.
Fournier
,
A. C.
Birch
, and
C. S.
Hanson
, “
Meridional flow in the Sun's convection zone is a single cell in each hemisphere
,”
Science
368
,
1469
1472
(
2020
).
34.
D. H.
Hathaway
,
L.
Upton
, and
O.
Colegrove
, “
Giant convection cells found on the Sun
,”
Science
342
,
1217
1219
(
2013
).
35.
D. H.
Hathaway
and
L. A.
Upton
, “
Hydrodynamic properties of the Sun's giant cellular flows
,”
Astrophys. J.
908
,
160
(
2021
).
36.
S. A.
Triana
,
G.
Guerrero
,
A.
Barik
, and
J.
Rekier
, “
Identification of inertial modes in the solar convection zone
,”
Astrophys. J. Lett.
934
,
L4
(
2022
).
37.
Y.
Bekki
, “
Numerical study of non-toroidal inertial modes with l = m + 1 radial vorticity in the Sun's convection zone
,”
Astron. Astrophys.
682
,
A39
(
2024
).
38.
R. C.
Carrington
,
Observations of the Spots on the Sun: From November 9, 1853, to March 24, 1861, Made at Redhill
(
Williams and Norgate
,
1863
).
39.
J.
Schou
, “
Migration of zonal flows detected using Michelson Doppler Imager f-mode frequency splittings
,”
Astrophys. J.
523
,
L181
L184
(
1999
).
40.
J. G.
Beck
, “
A comparison of differential rotation measurements - (invited review)
,”
Solar Phys.
191
,
47
70
(
2000
).
41.
F.
Hill
, “
Rings and trumpets - Three-dimensional power spectra of solar oscillations
,”
Astrophys. J.
333
,
996
1013
(
1988
).
42.
S.
Basu
,
H. M.
Antia
, and
S. C.
Tripathy
, “
Ring diagram analysis of near-surface flows in the Sun
,”
Astrophys. J.
512
,
458
470
(
1999
).
43.
P. H.
Scherrer
,
J.
Schou
,
R. I.
Bush
,
A. G.
Kosovichev
,
R. S.
Bogart
,
J. T.
Hoeksema
,
Y.
Liu
,
T. L.
Duvall
,
J.
Zhao
,
A. M.
Title
,
C. J.
Schrijver
,
T. D.
Tarbell
, and
S.
Tomczyk
, “
The Helioseismic and Magnetic Imager (HMI) investigation for the solar dynamics observatory (SDO)
,”
Solar Phys.
275
,
207
227
(
2012
).
44.
J.
Schou
,
P. H.
Scherrer
,
R. I.
Bush
,
R.
Wachter
,
S.
Couvidat
,
M. C.
Rabello-Soares
,
R. S.
Bogart
,
J. T.
Hoeksema
,
Y.
Liu
,
T. L.
Duvall
,
D. J.
Akin
,
B. A.
Allard
,
J. W.
Miles
,
R.
Rairden
,
R. A.
Shine
,
T. D.
Tarbell
,
A. M.
Title
,
C. J.
Wolfson
,
D. F.
Elmore
,
A. A.
Norton
, and
S.
Tomczyk
, “
Design and ground calibration of the helioseismic and magnetic imager (HMI) instrument on the solar dynamics observatory (SDO)
,”
Solar Phys.
275
,
229
259
(
2012
).
45.
R. S.
Bogart
,
C.
Baldner
,
S.
Basu
,
D. A.
Haber
, and
M. C.
Rabello-Soares
, “
HMI ring diagram analysis I. The processing pipeline
,”
J. Phys. Conf. Ser.
271
,
012008
(
2011
).
46.
R. S.
Bogart
,
C.
Baldner
,
S.
Basu
,
D. A.
Haber
, and
M. C.
Rabello-Soares
, “
HMI ring diagram analysis II. Data products
,”
J. Phys. Conf. Ser.
271
,
012009
(
2011
).
47.
C. S.
Hanson
,
T. L.
Duvall
,
A. C.
Birch
,
L.
Gizon
, and
K. R.
Sreenivasan
, “
Solar east-west flow correlations that persist for months at low latitudes are dominated by active region inflows
,”
Astron. Astrophys.
644
,
A103
(
2020
).
48.
B. W.
Hindman
,
D. A.
Haber
, and
J.
Toomre
, “
Subsurface circulations within active regions
,”
Astrophys. J.
698
,
1749
1760
(
2009
).
49.
B.
Löptien
,
A. C.
Birch
,
T. L.
Duvall
,
L.
Gizon
,
B.
Proxauf
, and
J.
Schou
, “
Measuring solar active region inflows with local correlation tracking of granulation
,”
Astron. Astrophys.
606
,
A28
(
2017
).
50.
E. R.
Anderson
,
T. L.
Duvall
, Jr.
, and
S. M.
Jefferies
, “
Modeling of solar oscillation power spectra
,”
Astrophys. J.
364
,
699
705
(
1990
).
51.
D.
Foreman-Mackey
,
D. W.
Hogg
,
D.
Lang
, and
J.
Goodman
, “
emcee: The MCMC Hammer
,”
Publ. Astron. Soc. Pac.
125
,
306
(
2013
).
You do not currently have access to this content.