A new analytical model for the generation of axisymmetric tornado-type vortices has been developed. A solution to the nonlinear equation for the stream function in an unstable stratified atmosphere is obtained and analyzed within the framework of ideal hydrodynamics. The solution is sought by smooth connecting continuous solutions for the internal region (eye), the central region (“wall” with maximum velocities), and the external region of the tornado. Expressions describing radial dependences for the radial and vertical velocity components include combinations of Bessel functions. The vortex is spatially localized by radius and height. Convective instability of a stratified atmosphere leads to an increase in the radial and vertical components of velocities according to the hyperbolic sine law. A downward flow is observed near the tornado axis. The maximum speed of the upward flow is achieved at a certain radial distance at a certain height. Below this height, radial flows converge toward the central part of the tornado, and above this height, there is an outflow from the wall to the axis and to the periphery. The radial structure of the azimuthal velocity is determined by the structure of the initial disturbance and can change with height. Maximum rotation is achieved in the tornado wall at a certain height. The increase in azimuthal velocity can occur according to a superexponential law. Possible structures of movements, scenarios for the development of a tornado, and its dynamics are discussed.

1.
Arsen'yev
,
S. A.
, “
Mathematical modeling of tornadoes and squall storms
,”
Geosci. Front.
2
(
2
),
215
221
(
2011
).
2.
Artekha
,
S. N.
and
Belyan
,
A. V.
, “
On the role of electromagnetic phenomena in some atmospheric processes
,”
Nonlinear Processes Geophys.
20
,
293
304
(
2013
).
3.
Balme
,
M.
and
Greeley
,
R.
, “
Dust devils on Earth and Mars
,”
Rev. Geophys.
44
,
RG3003
, https://doi.org/10.1029/2005RG000188 (
2006
).
4.
Ben-Amots
,
N.
, “
Dynamics and thermodynamics of tornado: Rotation effects
,”
Atmos. Res.
178–179
,
320
328
(
2016
).
5.
Bluestein
,
H. B.
, “
A review of ground-based, mobile, W-band Doppler-radar observations of tornadoes and dust devils
,”
Dyn. Atmos. Oceans
40
,
163
188
(
2005
).
6.
Bojarevičs
,
V.
,
Freibergs
,
J. A.
,
Shilova
,
E. I.
, and
Shcherbinin
,
E. V.
,
Electrically Induced Vortical Flows
(
Kluwer Academic Publishers
,
1989
).
7.
Brooks
,
E. M.
, “
Tornadoes and related phenomena
,” in
Compendium of Meteorology
, edited by
Malone
,
T. F.
(
American Meteorological Society
,
Boston
,
1951
).
8.
Chernokulsky
,
A.
,
Kurgansky
,
M.
,
Mokhov
,
I.
,
Shikhov
,
A.
,
Azhigov
,
I.
,
Selezneva
,
E.
,
Zakharchenko
,
D.
,
Antonescu
,
B.
, and
Kuhne
,
T.
, “
Tornadoes in Northern Eurasia: From the middle age to the information era
,”
Mon. Weather Rev.
148
(
8
),
3081
3110
(
2020
).
9.
Chernokulsky
,
A. V.
,
Kurgansky
,
M. V.
,
Mokhov
,
I. I.
,
Shikhov
,
A. N.
,
Azhigov
,
I. O.
,
Selezneva
,
E. V.
,
Zakharchenko
,
D. I.
,
Antonescu
,
B.
, and
Kuhne
,
T.
, “
Tornadoes in the Russian regions
,”
Russ. Meteorol. Hydrol.
46
,
69
82
(
2021
).
10.
Church
,
C. R.
,
Snow
,
J. T.
,
Baker
,
G. L.
, and
Agee
,
E. M.
, “
Characteristics of tornado-like vortices as a function of swirl ratio: A laboratory investigation
,”
J. Atmos. Sci.
36
,
1755
1776
(
1979
).
11.
Church
,
C. R.
and
Snow
,
J. T.
, “
Laboratory models of tornadoes
,” in
The Tornado: Its Structure, Dynamics, Predication, and Hazards
, Geophysical Monograph Series Vol.
79
(
American Geophysical Union
,
1993
), pp.
277
295
.
12.
Davies-Jones
,
R.
, “
A review of supercell and tornado dynamics
,”
Atmos. Res.
158–159
,
274
291
(
2015
).
13.
Dixon
,
A.
,
Skinner
,
P.
, and
Orf
,
L.
, “
Simulated WSR-88D observations of the streamwise vorticity current
,”
J. Oper. Meteor.
12
(
3
),
27
39
(
2024
).
14.
Gavrikov
,
M. B.
and
Taiurskii
,
A. A.
, “
A mathematical model of tornado
,”
J. Phys.: Conf. Ser.
1336
,
012001
(
2019
).
15.
Grazulis
,
T. P.
,
The Tornado: Nature's Ultimate Windstorm
(
Norman
,
University of Oklahoma Press
,
2001
).
16.
Horton
,
W.
,
Miura
,
H.
,
Onishchenko
,
O.
,
Couedel
,
L.
,
Arnas
,
C.
,
Escarguel
,
A.
,
Benkadda
,
S.
, and
Fedun
,
V.
, “
Dust devil dynamics
,”
JGR. Atmos.
121
,
7197
7214
(
2016
).
17.
Izhovkina
,
N. I.
,
Artekha
,
S. N.
,
Erokhin
,
N. S.
, and
Mikhailovskaya
,
L. A.
, “
Aerosol, plasma vortices and atmospheric processes
,”
Izv. Atmos. Ocean. Phys.
54
(
11
),
1513
1524
(
2018
).
18.
Justice
,
A. A.
, “
Seeing the inside of a tornado
,”
Mon. Weather Rev.
58
(
5
),
205
206
(
1930
).
19.
Kalashnik
,
M. V.
and
Visheratin
,
K. N.
, “
Cyclostrophic adjustment in swirling gas flows and the Ranque-Hilsch vortex tube effect
,”
J. Exp. Theor. Phys.
106
,
819
829
(
2008
).
20.
Kim
,
Y. C.
and
Matsui
,
M.
, “
Analytical and empirical models of tornado vortices: A comparative study
,”
J. Wind Eng. Ind. Aerodyn.
171
,
230
247
(
2017
).
21.
Kosiba
,
K. A.
,
Trapp
,
R. J.
, and
Wurman
,
J.
, “
An analysis of the axisymmetric three-dimensional low level wind field in a tornado using mobile radar observations
,”
Geophys. Res. Lett.
35
(
5
),
L05805
, https://doi.org/10.1029/2007GL031851 (
2008
).
22.
Kosiba
,
K.
and
Wurman
,
J.
, “
The strongest winds in tornadoes are very near the ground
,”
Commun. Earth Environ.
4
, 50 (
2023
).
23.
Kosiba
,
K.
and
Wurman
,
J.
, “
The three-dimensional axisymmetric wind field structure of the Spencer, South Dakota, 1998 tornado
,”
J. Atmos. Sci.
67
(
9
),
3074
3083
(
2010
).
24.
Kosiba
,
K.
and
Wurman
,
J.
, “
The three-dimensional structure and evolution of a tornado boundary layer
,”
Weather Forecast
28
,
1552
1561
(
2013
).
25.
Krasilnikov
,
E. Yu.
, “
Electromagnetohydrodynamic nature of tropical cyclones, hurricanes and tornadoes
,”
J. Geophys. Res.
102
(
D12
),
13571
13580
, https://doi.org/10.1029/97JD00146 (
1997
).
26.
Larichev
,
V. D.
and
Reznik
,
G. M.
, “
On two-dimensional solitary Rossby waves
,”
Dokl. Akad. Nauk SSSR
231
,
1077
1079
(
1976
).
27.
Lee
,
W.-C.
and
Wurman
,
J.
, “
Diagnosed three-dimensional axisymmetric structure of the Mulhall tornado on 3 May 1999
,”
J. Atmos. Sci.
62
(
7
),
2373
2393
(
2005
).
28.
Lewellen
,
D. C.
and
Lewellen
,
W. S.
, “
Near-surface intensification of tornado vortices
,”
J. Atmos. Sci.
64
,
2176
2194
(
2007
).
29.
Lv
,
P.
,
Zhang
,
Y.
,
Wang
,
Y.
, and
Wang
,
B.
, “
Experimental investigation on the influence of swirl ratio on tornado-like flow fields by varying updraft radius and inflow angle
,”
Atmosphere
14
,
1425
(
2023
).
30.
Makarieva
,
A. M.
,
Gorshkov
,
V. G.
, and
Nefiodov
,
A. V.
, “
Condensational theory of stationary tornadoes
,”
Phys. Lett. A
375
,
2259
2261
(
2011
).
31.
Mareev
,
E. A.
and
Trakhtengerts
,
V. Y.
, “
On the electric dynamo problem
,”
Radiophys. Quantum Electron.
39
,
527
538
(
1996
).
32.
Markowski
,
P. M.
,
Straka
,
J. M.
, and
Rasmussen
,
E. N.
, “
Tornadogenesis resulting from the transport of circulation by a downdraft: Idealized numerical simulations
,”
J. Atmos. Sci.
60
(
6
),
795
823
(
2003
).
33.
Markowski
,
P.
and
Richardson
,
Y.
, “
What we know and don't know about tornado formation
,”
Phys. Today
67
(
9
),
26
31
(
2014
).
34.
Maslov
,
S. A.
, “
Electric mechanisms of vorticity amplification in the funnel of a tornado
,”
Moscow Univ. Mech. Bull.
70
,
149
152
(
2015
).
35.
Miropol'skii
,
Y.
,
Dinamika Vnutrennikh Gravitatsionnykh Voln v Okeane
(Dynamics of Internal Gravity Waves in the Ocean) (
Gidrometeoizdat
,
Leningrad
,
1981
).
36.
Nalivkin
,
D. V.
, “
Hurricanes, storms and tornadoes
,” in
Geographic Characteristics and Geological Activity
(
A. A. Balkema
,
Rotterdam
,
1983
).
37.
Natyaganov
,
V. L.
and
Maslov
,
S. A.
, “
Electromagnetic mechanisms of forming a tornado-like whirlwind
,”
Moscow Univ. Mech. Bull.
69
,
29
34
(
2014
).
38.
See https://news.agu.org/press-release/new-research-finds-tornadoes-form-from-the-ground-up-contrary-to-popular-thought for "
New research finds tornadoes form from the ground up, contrary to popular thought
" (
2018
).
39.
Onishchenko
,
O. G.
,
Artekha
,
S. N.
,
Feygin
,
F. Z.
, and
Astafieva
,
N. M.
, “
Generation model of a spatially limited vortex in a stratified unstable atmosphere
,”
Geomagn. Aeron.
63
(
4
),
464
472
, https://doi.org/10.1134/S0016793223600340 (
2023
).
40.
Onishchenko
,
O. G.
,
Horton
,
W.
,
Pokhotelov
,
O. A.
, and
Stenflo
,
L.
, “
Dust devil generation
,”
Phys. Scr.
89
,
075606
(
2014
).
41.
Onishchenko
,
O. G.
,
Pokhotelov
,
O. A.
,
Astaf'eva
,
N. M.
,
Horton
,
W.
, and
Fedun
,
V. N.
, “
Structure and dynamics of concentrated mesoscale vortices in planetary atmospheres
,”
Phys.-Usp.
63
,
683
697
(
2020
).
42.
Onishchenko
,
O. G.
,
Pokhotelov
,
O. A.
, and
Horton
,
W.
, “
Dust devil dynamics in the internal vortex region
,”
Phys. Scr.
90
,
068004
(
2015
).
43.
Orf
,
L.
, “
A violently tornadic supercell thunderstorm simulation spanning a quarter-trillion grid volumes: Computational challenges, i/o framework, and visualizations of tornadogenesis
,”
Atmosphere
10
,
578
(
2019
).
44.
Orf
,
L.
,
Wilhelmson
,
R.
,
Lee
,
B.
,
Finley
,
C.
, and
Houston
,
A.
, “
Evolution of a long-track violent tornado within a simulated supercell
,”
Bull. Am. Meteorol. Soc.
98
(
1
),
45
68
(
2017
).
45.
Pelinovsky
,
E. N.
and
Romanova
,
N. N.
, “
Nonlinear stationary waves in the atmosphere
,”
Izv. Acad. Sci., USSR, Atmos. Oceanic Phys.
13
(
11
),
804
807
(
1977
).
46.
Raasch
,
S.
and
Franke
,
T.
, “
Structure and formation of dust devil-like vortices in the atmospheric boundary layer: A high-resolution numerical study
,”
J. Geophys. Res. Atmos.
116
,
D16120
, https://doi.org/10.1029/2011JD016010 (
2011
).
47.
Rafkin
,
S.
,
Jemmett-Smith
,
B.
,
Fenton
,
L.
,
Lorenz
,
R.
,
Takemi
,
T.
,
Ito
,
J.
, and
Tyler
,
D.
, “
Dust devil formation
,”
Space Sci. Rev.
203
,
183
207
(
2016
).
48.
Refan
,
M.
,
Hangan
,
H.
,
Wurman
,
J.
, and
Kosiba
,
K.
, “
Doppler radar-derived wind field of five tornado events with application to engineering simulations
,”
Eng. Struct.
148
,
509
521
(
2017
).
49.
Renno
,
N. O.
,
Burkett
,
M. L.
, and
Larkin
,
M. P.
, “
A simple thermodynamical theory for dust devils
,”
J. Atmos. Sci.
55
,
3244
3252
(
1998
).
50.
Serrin
,
J.
, “
The swirling vortex
,”
Philos. Trans. R. Soc. London, Ser. A
271
,
325
360
(
1972
).
51.
Sinclair
,
P. C.
, “
The lower structure of dust devils
,”
J. Atmos. Sci.
30
,
1599
1619
(
1973
).
52.
Sinkevich
,
O. A.
,
Maslov
,
S. A.
, and
Gusein-zade
,
N. G.
, “
Role of electric discharges in the generation of atmospheric vortices
,”
Plasma Phys. Rep.
43
,
232
252
(
2017
).
53.
Smul'skii
,
I. I.
, “
A sink-flow theory of tornados
,”
J. Eng. Phys. Thermophys.
70
,
941
951
(
1997
).
54.
Stenflo
,
L.
, “
Acoustic gravity vortices
,”
Phys. Scr.
41
,
641
(
1990
).
55.
Stenflo
,
L.
Acoustic solitary vortices
,”
Phys. Fluids
30
,
3297
3299
(
1987
).
56.
Tanamachi
,
R. L.
,
Bluestein
,
H. B.
,
Moore
,
S. S.
, and
Madding
,
R. P.
, “
Infrared thermal imagery of cloud base in tornadic supercells
,”
J. Atmos. Ocean. Technol.
23
(
11
),
1445
1461
(
2006
).
57.
The Tornado: Its Structure, Dynamics, Prediction, and Hazards
, Geophysical Monograph Series, edited by
Church
,
C.
,
Burgess
,
D.
,
Doswell
,
C.
, and
Davies-Jone
,
R.
(
American Geophysical Union
,
1993
).
58.
Thorarinsson
,
S.
and
Vonnegut
,
B.
, “
Whirlwinds produced by the eruption of Surtsey volcano
,”
Bull. Am. Meteorol. Soc.
45
(
8
),
440
444
(
1964
).
59.
Tohidi
,
A.
,
Gollner
,
M. J.
, and
Xiao
,
H.
, “
Fire whirls
,”
Annu. Rev. Fluid Mech.
50
,
187
213
(
2018
).
60.
Vonnegut
,
B.
, “
Electrical theory of tornadoes
,”
J. Geophys. Res.
65
(
1
),
203
212
, https://doi.org/10.1029/JZ065i001p00203 (
1960
).
61.
Ward
,
N. B.
, “
The exploration of certain features of tornado dynamics using a laboratory model
,”
J. Atmos. Sci.
29
,
1194
1204
(
1972
).
62.
Wood
,
V. T.
,
Tanamachi
,
R. L.
, and
White
,
L. W.
, “
Influences of larger-scale vortex variability on tornado pressure minima in an outer-flow region: Explorations using a parametric tangential wind model
,”
Mon. Weather Rev.
145
(
5
),
1597
1614
(
2017
).
63.
Wurman
,
J.
and
Alexander
,
C. R.
, “
The 30 May 1998 Spencer, South Dakota, storm. Part II: Comparison of observed damage and radar-derived winds in the tornadoes
,”
Mon. Weather Rev.
133
(
1
),
97
119
(
2005
).
64.
Wurman
,
J.
and
Kosiba
,
K.
, “
Finescale radar observations of tornado and mesocyclone structures
,”
Weather Forecasting
28
,
1157
1174
(
2013
).
65.
Yih
,
C. S.
, “
Tornado-like flows
,”
Phys. Fluids
19
,
076601
(
2007
).
66.
Zhang
,
H.
,
Wang
,
H.
,
Xu
,
Z.
, and
Khoo
,
B. C.
, “
A novel three-dimensional analytical tornado model constructed based on force balance analysis
,”
Phys. Fluids
35
,
065133
(
2023
).
You do not currently have access to this content.