The inflatable membrane reentry vehicle (IMRV) is one of the innovative aircrafts for next-generation space transport systems because of its reduced aerodynamic heating. In this study, a three-dimensional (3D) thermochemical nonequilibrium model is developed for simulating air plasma flows around an IMRV. This 3D nonequilibrium model includes the coupling of Navier–Stokes equations, 11 species, and 20 chemical reactions of air, a two-temperature model, and shear stress transfer kω turbulent transport equations. The simulated results are validated and compared with the corresponding experimental and numerical data published. Generally, they agree well with each other. It is concluded that the flight attack angle of the IMRV has an important impact on the flight stability. When the IMRV flies at an angle of attack of 0°, the translational-rotational and vibrational-electronic temperatures increase rapidly in the surge layer and decrease gradually near the wall. The wall pressure and heat flux decrease gradually along the capsule from the head to the inflatable film, increase rapidly where the inflatable film joins the rings, and decrease rapidly after the shoulder. The chemical and thermal nonequilibrium model developed in this study might be an accurate, stable, and low-cost modeling tool required for the optimal design of hypersonic reentry vehicles.

1.
B.
Wang
,
S.
Liu
, and
W.
Huang
,
Gas Dynamics
(
Beijing Institute of Technology Press
,
Beijing
,
2005
).
2.
M. M.
Mikulas
, Jr.
and
H. L.
Bohon
, “
Development status of attached inflatable decelerators
,”
J. Spacecr. Rockets
6
(
6
),
654
660
(
1969
).
3.
M. M.
Mikulas
, Jr.
and
H. L.
Bohon
, “
Summary of the development status of attached inflatable decelerators
,” AIAA Paper No. 68-929,
1968
.
4.
Y.
Takahashi
,
T.
Ohashi
,
N.
Oshima
,
Y.
Nagata
, and
K.
Yamada
, “
Aerodynamic instability of an inflatable aeroshell in suborbital re-entry
,”
Phys. Fluids
32
(
7
),
075114
(
2020
).
5.
K.
Yamada
,
Y.
Nagata
,
T.
Abe
,
K.
Suzuki
,
O.
Imamura
, and
D.
Akita
, “
Suborbital reentry demonstration of inflatable flare-type thin-membrane aeroshell using a sounding rocket
,”
J. Spacecr. Rockets
52
(
1
),
275
284
(
2015
).
6.
D.
Ha
,
Y.
Takahashi
,
K.
Yamada
, and
T.
Abe
, “
Aerodynamic simulation of inflatable re-entry vehicle performance in low speed wind tunnel
,”
Trans. Jpn. Soc. Aeronaut. Space Sci., Aerosp. Tech. Jpn.
12
(
29
),
57
62
(
2014
).
7.
Y.
Takahashi
,
T.
Koike
,
N.
Oshima
, and
K.
Yamada
, “
Aerothermodynamic analysis for deformed membrane of inflatable aeroshell in orbital reentry mission
,”
Aerosp. Sci. Technol.
92
,
858
868
(
2019
).
8.
Y.
Takahashi
,
K.
Yamada
, and
T.
Abe
, “
Examination of radio frequency blackout for an inflatable vehicle during atmospheric reentry
,”
J. Spacecr. Rockets
51
(
2
),
430
441
(
2014
).
9.
J.
Wei
,
R.
Ma
,
H.
Tan
, and
W.
Zhang
, “
Aerodynamic analysis of inflatable membrane aeroshell
,”
Appl. Mech. Mater.
423–426
,
1705
1710
(
2013
).
10.
I.
Clark
,
A.
Hutchings
,
C.
Tanner
, and
R.
Braun
, “
Supersonic inflatable aerodynamic decelerators for use on future robotic missions to Mars
,” in
IEEE Aerospace Conference
,
2008
.
11.
J.
Guo
,
G.
Lin
,
X.
Bu
,
S.
Fu
, and
Y.
Chao
, “
Effect of static shape deformation on aerodynamics and aerothermodynamics of hypersonic inflatable aerodynamic decelerator
,”
Acta Astronaut.
136
,
421
433
(
2017
).
12.
V.
Carandente
,
G.
Zuppardi
, and
R.
Savino
, “
Aerothermodynamic and stability analyses of a deployable re-entry capsule
,”
Acta Astronaut.
93
,
291
303
(
2014
).
13.
D.
Wilde
,
S.
Walther
,
K.
Pitchadze
,
S.
Alexsaschkin
,
D.
Vennemann
, and
L.
Marraffa
, “
Flight test and ISS application of the inflatable reentry and descent technology (IRDT)
,”
Acta Astronaut.
51
(
1–9
),
83
88
(
2002
).
14.
P.
Reynier
and
D.
Evans
, “
Postflight analysis of inflatable reentry and descent technology blackout during Earth reentry
,”
J. Spacecr. Rockets
46
(
4
),
800
809
(
2009
).
15.
K.
Yamada
,
D.
Akita
,
E.
Sato
,
K.
Suzuki
,
T.
Narumi
, and
T.
Abe
, “
Flare-type membrane aeroshell flight test at free drop from a balloon
,”
J. Spacecr. Rockets
46
(
3
),
606
614
(
2009
).
16.
Y.
Takahashi
,
K.
Yamada
,
T.
Abe
, and
K.
Suzuki
, “
Aerodynamic heating around flare-type membrane inflatable vehicle in suborbital reentry demonstration flight
,”
J Spacecr. Rockets
52
(
6
),
1530
1541
(
2015
).
17.
Y.
Nagata
,
K.
Yamada
,
T.
Abe
, and
K.
Suzuki
, “
Attitude dynamics for flare-type membrane aeroshell capsule in reentry flight experiment
,” AIAA Paper No. 2013-1285,
2013
.
18.
K.
Yamada
,
K.
Suzuki
,
T.
Abe
,
O.
Imamura
,
D.
Akita
,
Y.
Nagata
, and
Y.
Takahashi
, “
Development of flare-type inflatable membrane aeroshell for reentry demonstration from LEO
,” AIAA Paper No. 2015-2167,
2015
.
19.
K.
Luo
,
Q.
Wang
,
J.
Li
,
W.
Zhao
, and
S.
Gu
, “
A quasi-one-dimensional model for the stagnation streamline in hypersonic magnetohydrodynamic flows
,”
Phys. Fluids
35
(
3
),
036101
(
2023
).
20.
X.
Ma
,
J.
Fan
,
Y.
Wu
,
S.
Zhu
, and
R.
Xue
, “
Flow control effect of pulsed arc discharge plasma actuation on impinging shock wave/boundary layer interaction
,”
Phys. Fluids
35
(
3
),
036110
(
2023
).
21.
S.
Fang
,
X.
Lin
,
H.
Zeng
,
X.
Zhu
,
F.
Zhou
,
J.
Yang
,
F.
Li
,
D.
Ou
, and
X.
Yu
, “
Gas–surface interactions in a large-scale inductively coupled plasma wind tunnel investigated by emission/absorption spectroscopy
,”
Phys. Fluids
34
(
8
),
082113
(
2022
).
22.
S.
Fang
,
X.
Lin
,
J.
Yang
,
H.
Zeng
,
X.
Zhu
,
F.
Zhou
,
D.
Ou
,
F.
Li
, and
X.
Yu
, “
Spectral insight into the interface evolution of a carbon/carbon composite under high-enthalpy, nonequilibrium flow
,”
Phys. Fluids
35
(
10
),
102116
(
2023
).
23.
A.
Verhoff
,
M.
Grover
,
P.
Valentini
, and
N.
Bisek
, “
Thermochemical nonequilibrium predictions for nitrogen flow over a wedge
,” AIAA Paper No. 2022-3499,
2022
.
24.
P.
Valentini
,
M. S.
Grover
,
N.
Bisek
, and
A.
Verhoff
, “
Molecular simulation of flows in thermochemical non-equilibrium around a cylinder using ab initio potential energy surfaces for N2 + N and N2 + N2 interactions
,”
Phys. Fluids
33
(
9
),
096108
(
2021
).
25.
M.
Grover
,
A.
Verhoff
,
P.
Valentini
, and
N.
Bisek
, “
First principles simulation of reacting hypersonic flow over a blunt wedge
,”
Phys. Fluids
35
(
8
),
086106
(
2023
).
26.
M.
Dunn
and
S.
Kang
, “
Theoretical and experimental studies of reentry plasma
,”
Report No. CR-2232
(
National Aeronautics and Space Administration
,
1973
).
27.
C.
Park
, “
Review of chemical-kinetic problems of future NASA missions. I—Earth entries
,”
J. Thermophys. Heat Transfer
7
(
3
),
385
398
(
1993
).
28.
C.
Park
,
R. L.
Jaffe
, and
H.
Partridge
, “
Chemical-kinetic parameters of hyperbolic earth entry
,”
J. Thermophys. Heat Transfer
15
(
1
),
76
90
(
2001
).
29.
C.
Park
, “
Rotational relaxation of N2 behind a strong shock wave
,”
J. Thermophys. Heat Transfer
18
(
4
),
527
533
(
2004
).
30.
R. N.
Gupta
,
J. M.
Yos
, and
R. A.
Thompson
, “
A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K
,”
Report No. NASA-RP-1232
(
National Aeronautics and Space Administration
,
1990
).
31.
C.
Park
,
Nonequilibrium Hypersonic Aerothermodynamics
(
Wiley
,
New York
,
1990
).
32.
M.
Yu
,
Z.
Qiu
, and
Y.
Takahashi
, “
Numerical investigation of surface catalytic effect on the plasma sheath of a hypersonic re-entry capsule
,”
Phys. Fluids
35
(
5
),
056106
(
2023
).
33.
C.
Park
, “
Assessment of a two-temperature kinetic model for dissociating and weakly ionizing nitrogen
,”
J. Thermophys. Heat Transfer
2
(
1
),
8
16
(
1988
).
34.
F. R.
Menter
, “
Improved two-equation k-omega turbulence models for aerodynamic flows
,”
Memorandum No. 103975
(
National Aeronautics and Space Administration Ames Research Center
,
1992
).
35.
D.
Adanta
,
I. R.
Fattah
, and
N. M.
Muhammad
, “
Comparison of standard k-epsilon and SST k-omega turbulence model for breastshot waterwheel simulation
,”
J. Mech. Sci. Eng.
7
(
2
),
039
044
(
2020
).
36.
M.
Liou
, “
A sequel to AUSM, Part II: AUSM+-up for all speeds
,”
J. Comput. Phys.
214
(
1
),
137
170
(
2006
).
37.
S.
Mousavi
and
E.
Roohi
, “
Three dimensional investigation of the shock train structure in a convergent–divergent nozzle
,”
Acta Astronaut.
105
(
1
),
117
127
(
2014
).
38.
W.
Jones
and
A.
Cross
, “
Electrostatic-probe measurements of plasma parameters for two reentry flight experiments at 25000 feet per second
,”
Report No. NASA-TN-D-6617
(
National Aeronautics and Space Administration
,
1972
).
39.
S.
Surzhikov
, “
Numerical simulation of air ionization in the RAM-C-II flight experiment
,”
Fluid Dyn.
57
,
S279
S298
(
2022
).
You do not currently have access to this content.