The explicit filtering method for large eddy simulation (LES), which comprises integration of the governing equations without any added terms for sub-grid-scale modeling, and the application of a low-pass filter to transported fields, is discussed. The shapes of filter response functions of numerical schemes for spatial derivatives and the explicit filter that have been used for several LES are examined. Generally, these are flat (no filtering) over a range of low wavenumbers and then fall off over a small range of the highest represented wavenumbers. It is argued that this high wavenumber part can be viewed as a spectral buffer analogous to physical buffer (or sponge) zones used near outflow boundaries. With grid refinement, this buffer moves to higher wavenumbers and solutions are obtained with little change over a range of low wavenumbers but with added, correct, high wavenumber content. Examples show LES solutions to converge toward direct numerical simulations monotonically. Connections to other widely used methods are also explained.

1.
P.
Sagaut
,
Large Eddy Simulation for Incompressible Flows
, 3rd ed. (
Springer
,
2006
).
2.
J.
Mathew
,
R.
Lechner
,
H.
Foysi
,
J.
Sesterhenn
, and
R.
Friedrich
, “
An explicit filtering method for large eddy simulation of compressible flows
,”
Phys. Fluids
15
,
2279
2289
(
2003
).
3.
T. S.
Lund
, “
The use of explicit filters in large eddy simulation
,”
Comput. Math. Appl.
46
,
603
616
(
2003
).
4.
S.
Stolz
and
N. A.
Adams
, “
An approximate deconvolution procedure for large-eddy simulation
,”
Phys. Fluids
11
,
1699
1701
(
1999
).
5.
α=0.2 in Ref. 33, α=0.25 in Ref. 4.
6.
S.
Stolz
,
N. A.
Adams
, and
L.
Kleiser
, “
An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows
,”
Phys. Fluids
13
,
997
1015
(
2001
).
7.
B. J.
Geurts
, “
Inverse modeling for large-eddy simulation
,”
Phys. Fluids
9
,
3585
(
1997
).
8.
J. A.
Domaradzki
and
E. M.
Saiki
, “
A subgrid-scale model based on estimation of unresolved scales of turbulence
,”
Phys. Fluids
9
,
2148
(
1997
).
9.
M.
Germano
,
U.
Piomelli
,
P.
Moin
, and
W. H.
Cabot
, “
A dynamic subgrid-scale eddy viscosity model
,”
Phys. Fluids
3
(
7
),
1760
1771
(
1991
).
10.
M. R.
Visbal
and
D. V.
Gaitonde
, “
High-order-accurate methods for complex unsteady subsonic flows
,”
AIAA J.
37
,
1231
1239
(
1999
).
11.
M. R.
Visbal
and
D. P.
Rizzetta
, “
Large-eddy simulation on curvilinear grids using compact differencing and filtering schemes
,”
ASME J. Fluids Eng.
124
,
836
(
2002
).
12.
D. P.
Rizzetta
,
M. R.
Visbal
, and
P. E.
Morgan
, “
A high-order compact finite-difference scheme for large-eddy simulation of active flow control
,”
Prog. Aerosp. Sci.
44
,
397
426
(
2008
).
13.
C.
Bogey
and
C.
Bailly
, “
A family of low dispersive and low dissipative explicit schemes for flow and noise computations
,”
J. Comput. Phys.
194
,
194
214
(
2004
).
14.
D.
Marinc
and
H.
Foysi
, “
Investigation of a continuous adjoint-based optimization procedure for aeroacoustic control of plane jets
,”
Int. J. Heat Fluid Flow
38
,
200
212
(
2012
).
15.
C.
Schaupp
,
R.
Friedrich
, and
H.
Foysi
, “
Transverse injection of a plane-reacting jet into compressible turbulent channel flow
,”
J. Turbul.
13
,
N24
(
2012
).
16.
H.
Foysi
and
S.
Sarkar
, “
The compressible mixing layer: An LES study
,”
Theor. Comput. Fluid Dyn.
24
,
565
(
2010
).
17.
S. K.
Lele
, “
Compact finite difference schemes with spectral-like resolution
,”
J. Comput. Phys.
103
,
16
42
(
1992
).
18.
S.
Chakravorty
, “
On large eddy simulation of reacting flows using the explicit filtering method with a filtered mass density function
,”
Ph.D. thesi
s (
Department of Aerospace Engineering, Indian Institute of Science
,
2010
).
19.
S.
Chakravorty
and
J.
Mathew
, “
A high-resolution scheme for low Mach number flows
,”
Int. J. Numer. Methods Fluids
46
,
245
261
(
2004
).
20.
J.
Mathew
,
H.
Foysi
, and
R.
Friedrich
, “
A new approach to LES based on explicit filtering
,”
Int. J. Heat Fluid Flow
27
,
594
602
(
2006
).
21.
S.
Ganesh
, “
Flow and sound field of free and impinging jets from LES using explicit filtering method
,” Ph.D. thesis (
Department of Aerospace Engineering, Indian Institute of Science
,
2013
).
22.
S. K.
Patel
and
J.
Mathew
, “
Large eddy simulation of supersonic impinging jets by adaptive, explicit filtering
,” AIAA Paper No. 2015-2298 (
2015
).
23.
K. W.
Thompson
, “
Time dependent boundary conditions for hyperbolic systems
,”
J. Comput. Phys.
68
,
1
24
(
1987
).
24.
T.
Poinsot
and
S. K.
Lele
, “
Boundary conditions for direct simulation of viscous flows
,”
J. Comput. Phys.
101
,
104
129
(
1992
).
25.
N. A.
Adams
, “
A stochastic extension of the approximate deconvolution model
,”
Phys. Fluids
23
,
055103
(
2011
).
26.
S. K.
Patel
, “
Aeroacoustics of supersonic jets impinging on wedge deflectors from LES
,” Ph.D. thesis (
Department of Aerospace Engineering, Indian Institute of Science
,
2018
).
27.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University
,
2000
).
28.
N. R.
Panchapakesan
and
J. L.
Lumley
, “
Turbulence measurements in axisymmetric jets of air and Helium. Part 1. Air jet
,”
J. Fluid Mech.
246
,
197
223
(
1993
).
29.
H. J.
Hussein
,
S. P.
Capp
, and
W. K.
George
, “
Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent-jet
,”
J. Fluid Mech.
258
,
31
75
(
1994
).
30.
J. P.
Boris
, “
On large eddy simulation using subgrid turbulence models
,” in
Whither Turbulence? Turbulence at the Crossroads
, edited by
J. L.
Lumley
(
Springer
,
1990
).
31.
Implicit Large Eddy Simulation
, edited by
F. F.
Grinstein
,
L. G.
Margolin
, and
W. J.
Rider
(
Cambridge University
,
2007
).
32.
M. R.
Visbal
,
P. E.
Morgan
, and
D. P.
Rizzetta
, “
An implicit LES approach based on high-order compact differencing and filtering schemes
,” AIAA Paper No. 2003-4098,
2003
.
33.
N. A.
Adams
, “
Advances in direct deconvolution modeling of subgrid-scales for flows with discontinuities
,” in
CTR Annual Research Briefs 1999
(
Stanford University
,
1999
), pp.
317
327
.
34.
S.
Stolz
,
N. A.
Adams
, and
L.
Kleiser
, “
The approximate deconvolution model for large-eddy simulation of compressible flows and its application to shock-turbulent-boundary-layer interaction
,”
Phys. Fluids
13
,
2985
3001
(
2001
).
You do not currently have access to this content.