Direct numerical simulations of compressible nonisothermal turbulence in a periodic box with up to 40963 grid points were conducted by varying Reynolds numbers and resolution levels. The results were compared with those of compressible isothermal turbulence by Sakurai and Ishihara [“Direct numerical simulations of compressible isothermal turbulence in a periodic box: Reynolds number and resolution-level dependence,” Phys. Rev. Fluids 8, 084606 (2023)] to study the effect of isothermal assumption on turbulence statistics. The turbulent Mach number and ratio of the dilatational to solenoidal root mean square velocities were fixed at approximately 0.3 and 0.4, respectively. A comparison under approximately equal flow conditions showed that the dilatational component of the energy spectra for the nonisothermal case exhibited approximately equal k3 scaling at kη>1 as observed for the isothermal case and was consistently smaller in the wavenumber range 0.05<kη<0.6 than that for the isothermal case, where η is the Kolmogorov length. The dilatational energy is mainly dissipated around kη0.3, the same wavenumbers as the solenoidal energy dissipation irrespective of the isothermal assumption. As the Reynolds number increased, the dilatational energy dissipation caused by shocklets around kη2 became larger, especially in the nonisothermal case. It was found that the isothermal assumption weakened the intermittency of the velocity divergence. No significant differences were observed in the normalized mean energy dissipation rates and pressure statistics. The local flow topology was also marginally affected by the isothermal assumption; however, the difference was significantly less than the changes owing to the different values of parameters such as the Reynolds number and Mach number.

1.
P.
Moin
and
K.
Mahesh
, “
Direct numerical simulation: A tool in turbulence research
,”
Annu. Rev. Fluid Mech.
30
,
539
(
1998
).
2.
T.
Ishihara
,
T.
Gotoh
, and
Y.
Kaneda
, “
Study of high-Reynolds number isotropic turbulence by direct numerical simulation
,”
Annu. Rev. Fluid Mech.
41
,
165
(
2009
).
3.
S. K.
Lele
, “
Compressibility effects on turbulence
,”
Annu. Rev. Fluid Mech.
26
,
211
(
1994
).
4.
N.
Mattor
,
T. J.
Williams
, and
D.
Hewett
, “
Algorithm for solving tridiagonal matrix problems in parallel
,”
Parallel Comput.
21
,
1769
(
1995
).
5.
M.
Yokokawa
,
T.
Matsumoto
,
R.
Takegami
,
Y.
Sugiura
,
N.
Watanabe
,
Y.
Sakurai
,
T.
Ishihara
,
K.
Komatsu
, and
H.
Kobayashi
, and “
An asymptotic parallel linear solver and its application to direct numerical simulation for compressible turbulence
,” in
Computational Science - ICCS 2024
, Lecture Notes in Computer Science Vol. 14833, edited by
L.
Franco
,
C.
de Mulatier
,
M.
Paszynski
,
V. V.
Krzhizhanovskaya
,
J. J.
Dongarra
, and
P. M. A.
Sloot
, (
Springer
,
Cham
,
2024
).
6.
S.
Jagannathan
and
D. A.
Donzis
, “
Reynolds and Mach number scaling in solenoidally-forced compressible turbulence using high-resolution direct numerical simulations
,”
J. Fluid Mech.
789
,
669
(
2016
).
7.
Y.
Sakurai
and
T.
Ishihara
, “
Direct numerical simulations of compressible isothermal turbulence in a periodic box: Reynolds number and resolution-level dependence
,”
Phys. Rev. Fluids
8
,
084606
(
2023
).
8.
S.
Lee
,
S. K.
Lele
, and
P.
Moin
, “
Eddy shocklets in decaying compressible turbulence
,”
Phys. Fluids A
3
,
657
(
1991
).
9.
R.
Samtaney
,
D. I.
Pullin
, and
B.
Kosovic
, “
Direct numerical simulation of decaying compressible turbulence and shocklet statistics
,”
Phys. Fluids
13
,
1415
(
2001
).
10.
S.
Pirozzoli
and
F.
Grasso
, “
Direct numerical simulations of isotropic compressible turbulence: Influence of compressibility on dynamics and structures
,”
Phys. Fluids
16
,
4386
(
2004
).
11.
D. A.
Donzis
and
J. P.
John
, “
Universality and scaling in homogeneous compressible turbulence
,”
Phys. Rev. Fluids
5
,
084609
(
2020
).
12.
S.
Kida
and
S. A.
Orszag
, “
Energy and spectral dynamics in forced compressible turbulence
,”
J. Sci. Comput.
5
,
85
(
1990
).
13.
M. R.
Petersen
and
D.
Livescu
, “
Forcing for statistically stationary compressible isotropic turbulence
,”
Phys. Fluids
22
,
116101
(
2010
).
14.
C.
Federrath
,
R. S.
Klessen
, and
W.
Schmidt
, “
The density probability distribution in compressible isothermal turbulence: Solenoidal versus compressive forcing
,”
Astrophys. J.
688
,
L79
(
2008
).
15.
W.
Schmidt
,
C.
Federrath
,
M.
Hupp
,
S.
Kern
, and
J. C.
Niemeyer
, “
Numerical simulations of compressively driven interstellar turbulence. I. Isothermal gas
,”
Astron. Astrophys.
494
,
127
(
2009
).
16.
C.
Federrath
,
J.
Roman-Duval
,
R. S.
Klessen
,
W.
Schmidt
, and
M.-M.
Mac Low
, “
Comparing the statistics of interstellar turbulence in simulations and observations. Solenoidal versus compressive turbulence forcing
,”
Astron. Astrophys.
512
,
A81
(
2010
).
17.
L.
Pan
,
P.
Padoan
,
T.
Haugbølle
, and
Å.
Nordlund
, “
Supernova driving. II. Compressive ratio in molecular-cloud turbulence
,”
Astrophys. J.
825
,
30
(
2016
).
18.
Y.
Sakurai
,
T.
Ishihara
,
H.
Furuya
,
M.
Umemura
, and
K.
Shiraishi
, “
Effects of the compressibility of turbulence on the dust coagulation process in protoplanetary disks
,”
Astrophys. J.
911
,
140
(
2021
).
19.
G.
Pavlovski
,
M. D.
Smith
, and
M.-M.
Mac Low
, “
Hydrodynamical simulations of the decay of high-speed molecular turbulence-II. Divergence from isothermality
,”
Mon. Not. R. Astron. Soc.
368
,
943
(
2006
).
20.
A. G.
Kritsuk
,
M. L.
Norman
,
P.
Padoan
, and
R.
Wagner
, “
The statistics of supersonic isothermal turbulence
,”
Astrophys. J.
665
,
416
(
2007
).
21.
D. J.
Price
,
C.
Federrath
, and
C. M.
Brunt
, “
The density variance-Mach number relation in supersonic, isothermal turbulence
,”
Astrophys. J.
727
,
L21
(
2011
).
22.
L.
Pan
and
P.
Padoan
, “
Turbulence-induced relative velocity of dust particles. I. Identical particles
,”
Astrophys. J.
776
,
12
(
2013
).
23.
C.
Federrath
and
S.
Banerjee
, “
The density structure and star formation rate of non-isothermal polytropic turbulence
,”
Mon. Not. R. Astron. Soc.
448
,
3297
(
2015
).
24.
C. A.
Nolan
,
C.
Federrath
, and
R. S.
Sutherland
, “
The density variance-Mach number relation in isothermal and non-isothermal adiabatic turbulence
,”
Mon. Not. R. Astron. Soc.
451
,
1380
(
2015
).
25.
J.
Squire
and
P. F.
Hopkins
, “
The distribution of density in supersonic turbulence
,”
Mon. Not. R. Astron. Soc.
471
,
3753
(
2017
).
26.
S. K.
Lele
, “
Compact finite difference schemes with spectral-like resolution
,”
J. Comput. Phys.
103
,
16
(
1992
).
27.
S.
Gottlieb
and
C. W.
Shu
, “
Total variation diminishing Runge-Kutta schemes
,”
Math. Comput.
67
,
73
(
1998
).
28.
D. V.
Gaitonde
and
M. R.
Visbal
, “
High-order schemes for Navier-Stokes equations: Algorithms and implementation into FDL3DI
,”
Report No. AFRL-VA-WP-TR-1998-3060
(
Air Force Research Laboratory, Wright-Patterson AFB
,
1998
).
29.
S.
Sarkar
,
G.
Erlebacher
,
M. Y.
Hussaini
, and
H. O.
Kreiss
, “
The analysis and modelling of dilatational terms in compressible turbulence
,”
J. Fluid Mech.
227
,
473
(
1991
).
30.
J. P.
John
,
D. A.
Donzis
, and
K. R.
Sreenivasan
, “
Does dissipative anomaly hold for compressible turbulence?
J. Fluid Mech.
920
,
A20
(
2021
).
31.
D. A.
Donzis
and
S.
Jagannathan
, “
Fluctuations of thermodynamic variables in stationary compressible turbulence
,”
J. Fluid Mech.
733
,
221
(
2013
).
32.
J.
Wang
,
Y.
Yang
,
Y.
Shi
,
Z.
Xiao
,
X. T.
He
, and
S.
Chen
, “
Cascade of kinetic energy in three-dimensional compressible turbulence
,”
Phys. Rev. Lett.
110
,
214505
(
2013
).
33.
G.
Fauchet
and
J. P.
Bertoglio
, “
Pseudo-sound and acoustic regimes in compressible turbulence
,”
C. R. Acad. Sci. Ser. IIB
327
,
673
(
1999
).
34.
Y.
Dong
and
G.
He
, “
Scaling of energy spectra in weakly compressible turbulence
,”
Acta Mech. Sin.
33
,
500
(
2017
).
35.
G. I.
Taylor
, “
Statistical theory of turbulence
,”
Proc. R. Soc. London A
151
,
421
(
1935
).
36.
R.
Benzi
and
F.
Toschi
, “
Lectures on turbulence
,”
Phys. Rep.
1021
,
1
106
(
2023
).
37.
A. N.
Kolmogorov
, “
The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers
,”
Dokl. Acad. Nauk SSSR
30
,
9
(
1941
).
38.
J. C.
Vassilicos
, “
Dissipation in turbulent flows
,”
Annu. Rev. Fluid Mech.
47
,
95
(
2015
).
39.
Y.
Kaneda
,
T.
Ishihara
,
M.
Yokokawa
,
K.
Itakura
, and
A.
Uno
, “
Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box
,”
Phys. Fluids
15
,
L21
(
2003
).
40.
T.
Watanabe
,
K.
Tanaka
, and
K.
Nagata
, “
Solenoidal linear forcing for compressible, statistically steady, homogeneous isotropic turbulence with reduced turbulent Mach number oscillation
,”
Phys. Fluids
33
,
095108
(
2021
).
41.
Y.
Sakurai
,
T.
Ishihara
,
R.
Takegami
,
T.
Matsumoto
, and
M.
Yokokawa
, “
High resolution direct numerical simulations of compressible isothermal turbulence with up to 81923 grid points
,” in
26th International Congress of Theoretical and Applied Mechanics - Book of Abstracts
(2024).
42.
J.
Wang
,
Y.
Shi
,
L.-P.
Wang
,
Z.
Xiao
,
X. T.
He
, and
S.
Chen
, “
Scaling and statistics in three-dimensional compressible turbulence
,”
Phys. Rev. Lett.
108
,
214505
(
2012
).
43.
J.
Wang
,
T.
Gotoh
, and
T.
Watanabe
, “
Shocklet statistics in compressible isotropic turbulence
,”
Phys. Rev. Fluids
2
,
023401
(
2017
).
44.
P.
Sagaut
and
C.
Cambon
,
Homogeneous Turbulence Dynamics
(
Cambridge University Press
,
Cambridge, UK
,
2008
).
45.
H.
Miura
, “
Excitations of vortex waves in weakly compressible isotropic turbulence
,”
J. Turbul.
5
(
1
),
10
(
2004
).
46.
M. S.
Chong
,
A. E.
Perry
, and
B. J.
Cantwell
, “
A general classification of three-dimensional flow fields
,”
Phys. Fluids A
2
,
765
(
1990
).
47.
M.
Kevlahan
,
K.
Mahesh
, and
S.
Lee
, “
Evolution of the shock front and turbulence structures in the shock/turbulence interaction
,” in
Proceedings of the Summer Program
(
CTR
,
Stanford
), pp.
277
292
.
48.
J.
Wang
,
Y.
Shi
,
L.-P.
Wang
,
Z.
Xiao
,
X. T.
He
, and
S.
Chen
, “
Effect of compressibility on the small scale structures in isotropic turbulence
,”
J. Fluid Mech.
713
,
588
(
2012
).
49.
A.
Ooi
,
J.
Martin
,
J.
Soria
, and
M. S.
Chong
, “
A study of the evolution and characteristics of the invariants of the velocity-gradient tensor in isotropic turbulence
,”
J. Fluid Mech.
381
,
141
(
1999
).
50.
G. E.
Elsinga
and
I.
Marusic
, “
Evolution and lifetimes of flow topology in a turbulent boundary layer
,”
Phys. Fluids
22
,
015102
(
2010
).
51.
J.
Wang
,
L.-P.
Wang
,
Z.
Xiao
,
Y.
Shi
, and
S.
Chen
, “
A hybrid numerical simulation of isotropic compressible turbulence
,”
J. Comput. Phys.
229
,
5257
(
2010
).
You do not currently have access to this content.