Heat transfer in flows created by buoyancy, or natural convection, is a widely studied topic across various disciplines spanning natural flows as well as those with engineering applications. The convective heat transfer rate on a surface is commonly represented by the Nusselt number (Nu), a ratio of convective to diffusive transport, expressed often as RanPrm, where Ra is the Rayleigh number, the buoyancy forcing parameter, and Pr the Prandtl number. Motivated by the observation that n1/3 for turbulent convection, which implies the heat flux is independent of the length scale (L, characteristic length related to the geometry), we propose an alternate and physically more meaningful non-dimensional heat transfer parameter, denoted by Cq. Cq is derived using only the near wall variables and does not contain L. For n=1/3, Cq is constant. Even for laminar convection, where n1/4, CqRa1/12, a weak function of Ra. We show that for natural convection over several geometries and a wide range of Ra, the Cq values within a narrow range while the corresponding Nu values span several orders of magnitude. We also show that Cq is akin to the non-dimensional representation of wall shear stress, skin friction coefficient Cf. We believe that just like Cf, Cq will be an equally useful non-dimensional measure of heat transfer in natural convection flows.

1.
F. P.
Incropera
,
D. P.
DeWitt
,
T. L.
Bergman
, and
A. S.
Lavine
,
Fundamentals of Heat and Mass Transfer
(
Wiley
,
New York
,
1996
), Vol.
6
.
2.
R. B.
Stull
,
An Introduction to Boundary Layer Meteorology
(
Springer Science & Business Media
,
2012
), Vol.
13
.
3.
J. R.
Garratt
, “
The atmospheric boundary layer
,”
Earth-Sci. Rev.
37
(
1–2
),
89
134
(
1994
).
4.
F.
Chillà
and
J.
Schumacher
, “
New perspectives in turbulent Rayleigh-Bénard convection
,”
Eur. Phys. J. E
35
,
1
25
(
2012
).
5.
K.
Kitamura
,
A.
Mitsuishi
,
T.
Suzuki
, and
T.
Misumi
, “
Fluid flow and heat transfer of high-Rayleigh-number natural convection around heated spheres
,”
Int. J. Heat Mass Transfer
86
,
149
157
(
2015
).
6.
K.
Kitamura
,
A.
Mitsuishi
,
T.
Suzuki
, and
F.
Kimura
, “
Fluid flow and heat transfer of natural convection adjacent to upward-facing, rectangular plates of arbitrary aspect ratios
,”
Int. J. Heat Mass Transfer
89
,
320
332
(
2015
).
7.
R. H.
Kraichnan
, “
Turbulent thermal convection at arbitrary Prandtl number
,”
Phys. Fluids
5
(
11
),
1374
1389
(
1962
).
8.
C. R.
Doering
, “
Thermal forcing and ‘classical’ and ‘ultimate’ regimes of Rayleigh–Bénard convection
,”
J. Fluid Mech.
868
,
1
4
(
2019
).
9.
P.-E.
Roche
, “
The ultimate state of convection: A unifying picture of very high Rayleigh numbers experiments
,”
New J. Phys.
22
(
7
),
073056
(
2020
).
10.
X.
He
,
E.
Bodenschatz
, and
G.
Ahlers
, “
Universal scaling of temperature variance in Rayleigh–Bénard convection near the transition to the ultimate state
,”
J. Fluid Mech.
931
,
A7
(
2022
).
11.
R.
Verzicco
and
R.
Camussi
, “
Transitional regimes of low-Prandtl thermal convection in a cylindrical cell
,”
Phys. Fluids
9
(
5
),
1287
1295
(
1997
).
12.
R.
Verzicco
and
R.
Camussi
, “
Prandtl number effects in convective turbulence
,”
J. Fluid Mech.
383
,
55
73
(
1999
).
13.
R. J.
Stevens
,
R.
Verzicco
, and
D.
Lohse
, “
Radial boundary layer structure and Nusselt number in Rayleigh–Bénard convection
,”
J. Fluid Mech.
643
,
495
507
(
2010
).
14.
O.
Shishkina
and
A.
Thess
, “
Mean temperature profiles in turbulent Rayleigh–Bénard convection of water
,”
J. Fluid Mech.
633
,
449
460
(
2009
).
15.
J. D.
Scheel
,
E.
Kim
, and
K. R.
White
, “
Thermal and viscous boundary layers in turbulent Rayleigh–Bénard convection
,”
J. Fluid Mech.
711
,
281
305
(
2012
).
16.
R. J.
Stevens
,
D.
Lohse
, and
R.
Verzicco
, “
Prandtl and Rayleigh number dependence of heat transport in high Rayleigh number thermal convection
,”
J. Fluid Mech.
688
,
31
43
(
2011
).
17.
G.
Amati
,
K.
Koal
,
F.
Massaioli
,
K. R.
Sreenivasan
, and
R.
Verzicco
, “
Turbulent thermal convection at high Rayleigh numbers for a Boussinesq fluid of constant Prandtl number
,”
Phys. Fluids
17
(
12
),
121701
(
2005
).
18.
R.
Verzicco
and
R.
Camussi
, “
Numerical experiments on strongly turbulent thermal convection in a slender cylindrical cell
,”
J. Fluid Mech.
477
,
19
49
(
2003
).
19.
O.
Shishkina
and
C.
Wagner
, “
Local heat fluxes in turbulent Rayleigh-Bénard convection
,”
Phys. Fluids
19
(
8
),
085107
(
2007
).
20.
S.
Wagner
,
O.
Shishkina
, and
C.
Wagner
, “
Boundary layers and wind in cylindrical Rayleigh–Bénard cells
,”
J. Fluid Mech.
697
,
336
366
(
2012
).
21.
R.
Verzicco
and
K. R.
Sreenivasan
, “
A comparison of turbulent thermal convection between conditions of constant temperature and constant heat flux
,”
J. Fluid Mech.
595
,
203
219
(
2008
).
22.
S.
Kenjereš
and
K.
Hanjalić
, “
Numerical insight into flow structure in ultraturbulent thermal convection
,”
Phys. Rev. E
66
(
3
),
036307
(
2002
).
23.
C.
Sun
,
L.-Y.
Ren
,
H. A. O.
Song
, and
K.-Q.
Xia
, “
Heat transport by turbulent Rayleigh–Bénard convection in 1 m diameter cylindrical cells of widely varying aspect ratio
,”
J. Fluid Mech.
542
,
165
174
(
2005
).
24.
Q.
Zhou
,
B.-F.
Liu
,
C.-M.
Li
, and
B.-C.
Zhong
, “
Aspect ratio dependence of heat transport by turbulent Rayleigh–Bénard convection in rectangular cells
,”
J. Fluid Mech.
710
,
260
276
(
2012
).
25.
R. M.
Kerr
, “
Rayleigh number scaling in numerical convection
,”
J. Fluid Mech.
310
,
139
179
(
1996
).
26.
D.
Funfschilling
,
E.
Brown
,
A.
Nikolaenko
, and
G.
Ahlers
, “
Heat transport by turbulent Rayleigh–Bénard convection in cylindrical samples with aspect ratio one and larger
,”
J. Fluid Mech.
536
,
145
154
(
2005
).
27.
A.
Nikolaenko
,
E.
Brown
,
D.
Funfschilling
, and
G.
Ahlers
, “
Heat transport by turbulent Rayleigh–Bénard convection in cylindrical cells with aspect ratio one and less
,”
J. Fluid Mech.
523
,
251
260
(
2005
).
28.
X.
He
,
D.
Funfschilling
,
H.
Nobach
,
E.
Bodenschatz
, and
G.
Ahlers
, “
Transition to the ultimate state of turbulent Rayleigh-Bénard convection
,”
Phys. Rev. Lett.
108
(
2
),
024502
(
2012
).
29.
X.
He
,
D.
Funfschilling
,
E.
Bodenschatz
, and
G.
Ahlers
, “
Heat transport by turbulent Rayleigh–Bénard convection for Pr ≃ 0.8 and 4 × 1011 ≲ Ra ≲ 2 × 1014: Ultimate-state transition for aspect ratio γ = 1.00
,”
New J. Phys.
14
(
6
),
063030
(
2012
).
30.
J. J.
Niemela
,
L.
Skrbek
,
K. R.
Sreenivasan
, and
R. J.
Donnelly
, “
Turbulent convection at very high Rayleigh numbers
,”
Nature
404
(
6780
),
837
840
(
2000
).
31.
J. J.
Niemela
,
L.
Skrbek
,
K. R.
Sreenivasan
, and
R. J.
Donnelly
, “
Erratum: Turbulent convection at very high Rayleigh numbers
,”
Nature
406
(
6794
),
439
439
(
2000
).
32.
J. J.
Niemela
and
K. R.
Sreenivasan
, “
Turbulent convection at high Rayleigh numbers and aspect ratio 4
,”
J. Fluid Mech.
557
,
411
422
(
2006
).
33.
J. J.
Niemela
and
K. R.
Sreenivasan
, “
Confined turbulent convection
,”
J. Fluid Mech.
481
,
355
384
(
2003
).
34.
R. J.
Samuel
,
M.
Bode
,
J. D.
Scheel
,
K. R.
Sreenivasan
, and
J.
Schumacher
, “
Boundary layers in thermal convection are fluctuation-dominated
,” arXiv:2403.12877 (
2024
).
35.
S. A.
Theerthan
and
J. H.
Arakeri
, “
A model for near-wall dynamics in turbulent Rayleigh–Bénard convection
,”
J. Fluid Mech.
373
,
221
254
(
1998
).
36.
J. H.
Arakeri
, “
Convection
,” in
Handbook of Environmental Fluid Dynamics: Overview and Fundamentals
, edited by
H. J.
Fernando
(CRC Press, Taylor and Francis Group,
2012
), Vol.
1
, Chap. 4.
37.
W. V. R.
Malkus
, “
The heat transport and spectrum of thermal turbulence
,”
Proc. R. Soc. London, Ser. A
225
(
1161
),
196
212
(
1954
).
38.
K.
Kitamura
and
F.
Kimura
, “
Fluid flow and heat transfer of natural convection over upward‐facing, horizontal heated circular disks
,”
Heat Transfer-Asian Res.
37
(
6
),
339
351
(
2008
).
39.
K.
Kitamura
,
F.
Kami-Iwa
, and
T.
Misumi
, “
Heat transfer and fluid flow of natural convection around large horizontal cylinders
,”
Int. J. Heat Mass Transfer
42
(
22
),
4093
4106
(
1999
).
40.
B. A.
Puthenveettil
,
G. S.
Gunasegarane
,
Y. K.
Agrawal
,
D.
Schmeling
,
J.
Bosbach
, and
J. H.
Arakeri
, “
Length of near-wall plumes in turbulent convection
,”
J. Fluid Mech.
685
,
335
364
(
2011
).
41.
E. D.
Siggia
, “
High Rayleigh number convection
,”
Annu. Rev. Fluid Mech.
26
(
1
),
137
168
(
1994
).
42.
D.
Lohse
and
K.-Q.
Xia
, “
Small-scale properties of turbulent Rayleigh-Bénard convection
,”
Annu. Rev. Fluid Mech.
42
(
1
),
335
364
(
2010
).
43.
R.
Krishnamurti
, “
On the transition to turbulent convection. Part 1. The transition from two-to three-dimensional flow
,”
J. Fluid Mech.
42
(
2
),
295
307
(
1970
).
44.
R.
Krishnamurti
, “
On the transition to turbulent convection. Part 2. The transition to time-dependent flow
,”
J. Fluid Mech.
42
(
2
),
309
320
(
1970
).
45.
B. A.
Puthenveettil
and
J. H.
Arakeri
, “
Plume structure in high-Rayleigh-number convection
,”
J. Fluid Mech.
542
,
217
249
(
2005
).
46.
B. A.
Puthenveettil
and
J. H.
Arakeri
, “
Convection due to an unstable density difference across a permeable membrane
,”
J. Fluid Mech.
609
,
139
170
(
2008
).
47.
S. A.
Theerthan
and
J. H.
Arakeri
, “
Planform structure and heat transfer in turbulent free convection over horizontal surfaces
,”
Phys. Fluids
12
(
4
),
884
894
(
2000
).
48.
J.-C.
Tisserand
,
M.
Creyssels
,
Y.
Gasteuil
,
H.
Pabiou
,
M.
Gibert
,
B.
Castaing
, and
F.
Chillà
, “
Comparison between rough and smooth plates within the same Rayleigh–Bénard cell
,”
Phys. Fluids
23
(
1
),
015105
(
2011
).
49.
P.
Wei
,
T.-S.
Chan
,
R.
Ni
,
X.-Z.
Zhao
, and
K.-Q.
Xia
, “
Heat transport properties of plates with smooth and rough surfaces in turbulent thermal convection
,”
J. Fluid Mech.
740
,
28
46
(
2014
).
50.
J.
Salort
,
O.
Liot
,
E.
Rusaouen
,
F.
Seychelles
,
J.-C.
Tisserand
,
M.
Creyssels
,
B.
Castaing
, and
F.
Chillà
, “
Thermal boundary layer near roughnesses in turbulent Rayleigh-Bénard convection: Flow structure and multistability
,”
Phys. Fluids
26
(
1
),
015112
(
2014
).
51.
E.
Rusaouën
,
O.
Liot
,
B.
Castaing
,
J.
Salort
, and
F.
Chillà
, “
Thermal transfer in Rayleigh–Bénard cell with smooth or rough boundaries
,”
J. Fluid Mech.
837
,
443
460
(
2018
).
52.
M. J.
Tummers
and
M.
Steunebrink
, “
Effect of surface roughness on heat transfer in Rayleigh-Bénard convection
,”
Int. J. Heat Mass Transfer
139
,
1056
1064
(
2019
).
53.
S.
Globe
and
D.
Dropkin
, “
Natural-convection heat transfer in liquids confined by two horizontal plates and heated from below
,”
J. Heat Transfer
81
(
1
),
24
28
(
1959
).
54.
T.
Hiroaki
and
M.
Hiroshi
, “
Turbulent natural convection in a horizontal water layer heated from below
,”
Int. J. Heat Mass Transfer
23
(
9
),
1273
1281
(
1980
).
55.
H. T.
Rossby
, “
A study of Bénard convection with and without rotation
,”
J. Fluid Mech.
36
(
2
),
309
335
(
1969
).
56.
W. M.
Lewandowski
,
E.
Radziemska
,
M.
Buzuk
, and
H.
Bieszk
, “
Free convection heat transfer and fluid flow above horizontal rectangular plates
,”
Appl. Energy
66
(
2
),
177
197
(
2000
).
57.
E.
Radziemska
and
W. M.
Lewandowski
, “
Free convective heat transfer structures as a function of the width of isothermal horizontal rectangular plates
,”
Heat Transfer Eng.
26
(
4
),
042
050
(
2005
).
58.
R.
Cheesewright
, “
Turbulent natural convection from a vertical plane surface
,”
J. Heat Transfer
90
,
1
6
(
1968
).
59.
R.
Cheesewright
and
K. S.
Doan
, “
Space-time correlation measurements in a turbulent natural convection boundary layer
,”
Int. J. Heat Mass Transfer
21
(
7
),
911
921
(
1978
).
60.
T.
Tsuji
and
Y.
Nagano
, “
Characteristics of a turbulent natural convection boundary layer along a vertical flat plate
,”
Int. J. Heat Mass Transfer
31
(
8
),
1723
1734
(
1988
).
61.
T.
Tsuji
and
Y.
Nagano
, “
Turbulence measurements in a natural convection boundary layer along a vertical flat plate
,”
Int. J. Heat Mass Transfer
31
(
10
),
2101
2111
(
1988
).
62.
T.
Tsuji
and
Y.
Nagano
, “
Velocity and temperature measurements in a natural convection boundary layer along a vertical flat plate
,”
Exp. Therm. Fluid Sci.
2
(
2
),
208
215
(
1989
).
63.
J. S.
Turner
,
Buoyancy Effects in Fluids
(
Cambridge University Press
,
1979
).
64.
J.
Ke
,
N.
Williamson
,
S. W.
Armfield
, and
A.
Komiya
, “
The turbulence development of a vertical natural convection boundary layer
,”
J. Fluid Mech.
964
,
A24
(
2023
).
65.
M. J.
Chamberlain
,
Free Convection Heat Transfer from a Sphere, Cube and Vertically Aligned Bi-Sphere
(
University of Waterloo
,
1985
).
66.
E.
Schmidt
, “
Versuche zum Wärmeübergang bei natürlicher Konvektion
,”
Chem. Ing. Tech.
28
(
3
),
175
180
(
1956
).
67.
S. S.
Kutateladze
,
Fundamentals of Heat Transfer
(Academic Press,
1963
).
68.
G.
Schütz
, “
Natural convection mass-transfer measurements on spheres and horizontal cylinders by an electrochemical method
,”
Int. J. Heat Mass Transfer
6
(
10
),
873
879
(
1963
).
69.
J.
Van der Burgh
, “
Thermal convection at a melting benzene surface
,”
Appl. Sci. Res.
9
(
1
),
293
(
1960
).
70.
A. V.
Hassani
and
K. G. T.
Hollands
, “
On natural convection heat transfer from three-dimensional bodies of arbitrary shape
,”
J. Heat Transfer
111
,
363
371
(
1989
).
71.
S.
Subudhi
and
J. H.
Arakeri
, “
Plumes dynamics and heat transfer over horizontal grooved surfaces
,”
Exp. Heat Transfer
25
(
1
),
58
76
(
2012
).
72.
S.
Subudhi
and
J. H.
Arakeri
, “
Flow visualization in turbulent free convection over horizontal smooth and grooved surfaces
,”
Int. Commun. Heat Mass Transfer
39
(
3
),
414
418
(
2012
).
73.
J. W.
Deardorff
and
G. E.
Willis
, “
Further results from a laboratory model of the convective planetary boundary layer
,”
Boundary-Layer Meteorol.
32
,
205
236
(
1985
).
74.
L. N.
Howard
, “
Convection at high Rayleigh number
,” in
Applied Mechanics: Proceedings of the Eleventh International Congress of Applied Mechanics Munich (Germany) 1964
(
Springer
,
Berlin/Heidelberg
,
1966
), pp.
1109
1115
.
You do not currently have access to this content.