Particle image velocimetry (PIV) data are a valuable asset in fluid mechanics. It is capable of visualizing flow structures even in complex physics scenarios, such as the flow at the exit of the rotor of a centrifugal fan. Machine learning is also a successful companion to PIV in order to increase data resolution or impute experimental gaps. While classical algorithms focus solely on replicating data using statistical metrics, the application of physics-informed neural networks (PINN) contributes to both data reconstruction and adherence to governing equations. The present study utilizes a convolutional physics-informed auto-encoder to reproduce planar PIV fields in the gappy regions while also satisfying the mass conservation equation. It proposes a novel approach that compromises experimental data reconstruction for compliance with physical restrictions. Simultaneously, it is aimed to ensure that the reconstruction error does not considerably deviate from the uncertainty band of the test data. A turbulence scale approximation is employed to set the relative weighting of the physical and data-driven terms in the loss function to ensure that both objectives are achieved. All steps are initially evaluated on a set of direct numerical simulation data to demonstrate the general capability of the network. Finally, examination of the PIV data indicates that the proposed PINN auto-encoder can enhance reconstruction accuracy by about 28% and 29% in terms of mass conservation residual and velocity statistics, respectively, at the expense of up to a 5% increase in the number of vectors with reconstruction error higher than the uncertainty band of the PIV test data.

1.
S. L.
Brunton
, “
Applying machine learning to study fluid mechanics
,”
Acta Mech. Sin.
37
,
1718
1726
(
2022
).
2.
R.
Vinuesa
and
S. L.
Brunton
, “
Enhancing computational fluid dynamics with machine learning
,”
Nat. Comput. Sci.
2
,
358
366
(
2022
).
3.
P.
Sharma
,
W. T.
Chung
,
B.
Akoush
, and
M.
Ihme
, “
A review of physics-informed machine learning in fluid mechanics
,”
Energies
16
(
5
),
2343
(
2023
).
4.
S. G.
Raben
,
J. J.
Charonko
, and
P. P.
Vlachos
, “
Adaptive gappy proper orthogonal decomposition for particle image velocimetry data reconstruction
,”
Meas. Sci. Technol.
23
(
2
),
025303
(
2012
).
5.
X.
Wen
et al, “
Missing data recovery using data fusion of incomplete complementary data sets: A particle image velocimetry application
,”
Phys. Fluids
31
(
2
),
025105
(
2019
).
6.
L.
Gao
et al, “
Reconstruction of missing data in weather radar image sequences using deep neuron networks
,”
Appl. Sci.
11
(
4
),
1491
(
2021
).
7.
M.
Likowski
,
M.
Smieja
,
L.
Struski
, and
J.
Tabor
, “
MisConv: Convolutional Neural Networks for Missing Data
,” in
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)
, Los Alamitos, CA (
IEEE Computer Society
,
2022
), pp.
2917
2926
.
8.
Q.
Zhang
,
Q.
Yuan
,
C.
Zeng
,
X.
Li
, and
Y.
Wei
, “
Missing data reconstruction in remote sensing image with a unified spatial–temporal–spectral deep convolutional neural network
,”
IEEE Trans. Geosci. Remote Sens.
56
(
8
),
4274
4288
(
2018
).
9.
K.
Fukami
,
K.
Fukagata
, and
K.
Taira
, “
Super-resolution reconstruction of turbulent flows with machine learning
,”
J. Fluid Mech.
870
,
106
120
(
2019
).
10.
Y.
Xie
,
E.
Franz
,
M.
Chu
, and
N.
Thuerey
, “
tempoGAN: A temporally coherent, volumetric GAN for super-resolution fluid flow
,”
ACM Trans. Graphics
37
(
4
),
95
(
2018
).
11.
L.
Yu
,
M. Z.
Yousif
,
M.
Zhang
,
S.
Hoyas
,
R.
Vinuesa
, and
H. C.
Lim
, “
Three-dimensional ESRGAN for super-resolution reconstruction of turbulent flows with tricubic interpolation-based transfer learning
,”
Phys. Fluids
34
(
12
),
125126
(
2022
).
12.
S.
Oh
,
S.
Lee
,
M.
Son
,
J.
Kim
, and
H.
Ki
, “
Accurate prediction of the particle image velocimetry flow field and rotor thrust using deep learning
,”
J. Fluid Mech.
939
,
A2
(
2022
).
13.
Z.
Den
,
Z.
He
,
Y.
Liu
, and
K. C.
Kim
, “
Super-resolution reconstruction of turbulent velocity fields using a generative adversarial network-based artificial intelligence framework
,”
Phys. Fluids
31
(
12
),
125111
(
2019
).
14.
B.
Liu
,
J.
Tang
,
H.
Huang
, and
X.-Y.
Lu
, “
Deep learning methods for super-resolution reconstruction of turbulent flows
,”
Phys. Fluids
32
(
2
),
025105
(
2020
).
15.
G.
Akbari
and
N.
Montazerin
, “
Reconstruction of particle image velocimetry data using flow-based features and validation index: A machine learning approach
,”
Meas. Sci. Technol.
33
(
1
),
015203
(
2022
).
16.
M.
Raissi
,
P.
Perdikaris
, and
G. E.
Karniadakis
, “
Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
,”
J. Comput. Phys.
378
,
686
707
(
2019
).
17.
X.
Jin
,
S.
Cai
,
H.
Li
, and
G. E.
Karniadakis
, “
NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations
,”
J. Comput. Phys.
426
,
109951
(
2020
).
18.
G. E.
Karniadakis
,
I. G.
Kevrekidis
,
L.
Lu
,
P.
Perdikaris
,
S.
Wang
, and
L.
Yang
, “
Physics-informed machine learning
,”
Nat. Rev. Phys.
3
(
6
),
422
440
(
2021
).
19.
A.
Arzani
,
J. X.
Wang
, and
R. M.
D'Souza
, “
Uncovering near-wall blood flow from sparse data with physics-informed neural networks
,”
Phys. Fluids
33
(
7
),
071905
(
2021
).
20.
V.
Sekar
,
Q.
Jiang
,
C.
Shu
, and
B. C.
Khoo
, “
Accurate near wall steady flow field prediction using physics informed neural network (PINN)
,” arXiv:2204.03352 (
2022
).
21.
S.
Cai
,
Z.
Mao
,
Z.
Wang
,
M.
Yin
, and
G. E.
Karniadakis
, “
Physics-informed neural networks (PINNs) for fluid mechanics: A review
,”
Acta Mech. Sin.
37
,
1727
1738
(
2021
).
22.
G.
Hasanuzzaman
,
H.
Eivazi
,
S.
Merbold
,
C.
Egbers
, and
R.
Vinuesa
, “
Enhancement of PIV measurements via physics-informed neural networks
,”
Meas. Sci. Technol.
34
(
4
),
044002
(
2023
).
23.
M. A.
Calicchia
,
R.
Mittal
,
J.-H.
Seo
, and
R.
Ni
, “
Reconstructing the pressure field around a swimming fish using a physics-informed neural network
,”
J. Exp. Biol.
226
,
jeb244983
(
2023
).
24.
V.
Kag
,
K.
Seshasayanan
, and
V.
Gopinath
, “
Physics-informed data based neural networks for two-dimensional turbulence
,”
Phys. Fluids
34
(
5
),
055130
(
2022
).
25.
C. D.
Leoni
,
P.
Agarwal
, and
K.
Zaki
, “
Reconstructing turbulent velocity and pressure fields from under-resolved noisy particle tracks using physics-informed neural networks
,”
Exp. Fluids
64
,
95
(
2023
).
26.
S.
Wang
,
Y.
Teng
, and
P.
Perdikaris
, “
Understanding and mitigating gradient pathologies in physics-informed neural networks
,”
Soc. Ind. Appl. Math.
43
(
5
),
A3055
A3081
(
2020
).
27.
S.
Wang
,
X.
Yu
, and
P.
Perdikaris
, “
When and why PINNs fail to train: A neural tangent kernel perspective
,”
J. Comput. Phys.
449
,
110768
(
2020
).
28.
L.
McClenny
and
U.
Braga-Neto
, “
Self-adaptive physics-informed neural networks using a soft attention mechanism
,”
J. Comput. Phys.
474
,
111722
(
2020
).
29.
H.
Eivazi
and
R.
Vinuesa
, “
Physics-informed deep-learning applications to experimental fluid mechanics
,” arXiv:2203.15402 (
2022
).
30.
S.
Cai
,
Z.
Wang
,
F.
Fuest
,
Y.-J.
Jeon
,
C.
Gray
, and
G. E.
Karniadakis
, “
Flow over an espresso cup: Inferring 3D velocity and pressure fields from tomographic background oriented Schlieren videos via physics-informed neural networks
,”
J. Fluid Mech.
915
,
A102
(
2021
).
31.
H.
Wang
,
Y.
Liu
, and
S.
Wang
, “
Dense velocity reconstruction from particle image velocimetry/particle tracking velocimetry using a physics-informed neural network
,”
Phys. Fluids
34
(
1
),
017116
(
2022
).
32.
K.
Agarwal
,
O.
Ram
,
J.
Wang
,
Y.
Lu
, and
J.
Katz
, “
Reconstructing velocity and pressure from noisy sparse particle tracks using constrained cost minimization
,”
Exp. Fluids
62
(
4
),
75
(
2021
).
33.
G.
Akbari
,
N.
Montazerin
, and
M.
Akbarizadeh
, “
Stereoscopic particle image velocimetry of the flow field in the rotor exit region of a forward-blade centrifugal turbomachine
,”
Proc. Inst. Mech. Eng., Part A
226
(
2
),
163
181
(
2012
).
34.
BSI
, “
Fans for general purposes, Part 1: Methods for testing performances
,” Standard No. BS848 (
British Standard Institution
,
London
,
1997
).
35.
A.
Geron
,
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems
, 2nd ed. (
O'Reilly Media, Inc.
,
2019
).
36.
J.
Taylor
,
W.
Wang
,
B.
Bala
, and
T.
Bednarz
, “
Optimizing the optimizer for data driven deep neural networks and physics informed neural networks
,” arXiv:2205.07430 (
2022
).
37.
E.
McGowan
,
V.
Gawade
, and
W.
(Grace) Guo
, “
A physics-informed convolutional neural network with custom loss functions for porosity prediction in laser metal deposition
,”
Sensors
22
(
2
),
494
(
2022
).
38.
H.
Gao
,
L.
Sun
, and
J.-X.
Wang
, “
Super-resolution and denoising of fluid flow using physics-informed convolutional neural networks without high-resolution labels
,”
Phys. Fluids
33
(
7
),
073603
(
2021
).
39.
P.-H.
Chiu
,
J.
Cheng Wong
,
C.
Ooi
,
M. H.
Dao
, and
Y.-S.
Ong
, “
CAN-PINN: A fast physics-informed neural network based on coupled-automatic-numerical differentiation method
,”
Comput. Methods Appl. Mech. Eng.
395
,
114909
(
2022
).
40.
Z.
Xiang
,
W.
Peng
,
X.
Liu
, and
W.
Yao
, “
Self-adaptive loss BALANCED Physics-informed neural networks
,”
Neurocomputing
496
,
11
34
(
2022
).
41.
J. N.
Kutz
,
S. L.
Steven
,
L.
Brunton
,
B. W.
Brunton
, and
J. L.
Procor
,
Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems
(
Society for Industrial and Applied Mathematics
,
2016
).
42.
J. N.
Kutz
,
S. L.
Brunton
,
B.
Brunton
, and
J. L.
Proctor
, see http://www.dmdbook.com/ for “
Dynamic mode decomposition: Data-driven of modeling complex systems
” (
2022
).
43.
G.
Akbari
and
N.
Montazerin
, “
On the role of anisotropic turbomachinery flow structures in inter-scale turbulence energy flux as deduced from SPIV measurements
,”
J. Turbul.
14
(
11
),
44
70
(
2013
).
You do not currently have access to this content.