Micro-pin fin heat sinks are widely used to cool miniature devices. The flow characteristics and cooling performance of these heat sinks are highly dependent on their geometric configuration. Previous studies have focused on optimizing the design so that the pressure drop decreases, while the heat transfer performance is maintained. However, limited numbers of geometries have been explored, mainly considering only homogeneous pin fin arrays. In this study, we propose a neural network-based regression approach called the flow-learned building block (FLBB) and develop an effective parametric study and optimization for micro-pin fin heat sinks including heterogeneous geometries. The prediction capabilities of the FLBB are verified by comparing the predicted results with direct numerical simulation results for various pitch distances, pin sizes, and arrangements at Reynolds numbers from 1 to 100. Furthermore, we demonstrate the applicability of the FLBB to different working fluids, quantified by the Prandtl number (0.71  Pr  5.86). Leveraging the reliable and effective prediction capabilities of our neural network-based approach, we perform parametric studies of micro-pin fin heat sinks for working fluids of air and water with the aim of minimizing the pump power and achieving uniform heat transfer along the pin fins.

1.
M.
Zargartalebi
,
A. M.
Benneker
, and
J.
Azaiez
, “
The impact of heterogeneous pin based micro-structures on flow dynamics and heat transfer in micro-scale heat exchangers
,”
Phys. Fluids
32
,
052007
(
2020
).
2.
K.
He
and
L.-Z.
Zhang
, “
Cross flow and heat transfer of hollow-fiber tube banks with complex distribution patterns and various baffle designs
,”
Int. J. Heat Mass Transfer
147
,
118937
(
2020
).
3.
W.
Li
,
S.
Shen
, and
H.
Li
, “
Study and optimization of the filtration performance of multi–fiber filter
,”
Adv. Powder Technol.
27
,
638
(
2016
).
4.
T.
Salafi
,
Y.
Zhang
, and
Y.
Zhang
, “
A review on deterministic lateral displacement for particle separation and detection
,”
Nano-Micro Lett.
11
,
77
(
2019
).
5.
M. I.
Hasan
, “
Investigation of flow and heat transfer characteristics in micro pin fin heat sink with nanofluid
,”
Appl. Therm. Eng.
63
,
598
(
2014
).
6.
T.
Yeom
,
T.
Simon
,
T.
Zhang
,
M.
Zhang
,
M.
North
, and
T.
Cui
, “
Enhanced heat transfer of heat sink channels with micro pin fin roughened walls
,”
Int. J. Heat Mass Transfer
92
,
617
(
2016
).
7.
H.
Zhao
,
Z.
Liu
,
C.
Zhang
,
N.
Guan
, and
H.
Zhao
, “
Pressure drop and friction factor of a rectangular channel with staggered mini pin fins of different shapes
,”
Exp. Therm. Fluid Sci.
71
,
57
(
2016
).
8.
D.
Yang
,
Z.
Jin
,
Y.
Wang
,
G.
Ding
, and
G.
Wang
, “
Heat removal capacity of laminar coolant flow in a micro channel heat sink with different pin fins
,”
Int. J. Heat Mass Transfer
113
,
366
(
2017
).
9.
M.
Zargartalebi
and
J.
Azaiez
, “
Flow dynamics and heat transfer in partially porous microchannel heat sinks
,”
J. Fluid Mech.
875
,
1035
(
2019
).
10.
S.
Ndao
,
Y.
Peles
, and
M. K.
Jensen
, “
Effects of pin fin shape and configuration on the single-phase heat transfer characteristics of jet impingement on micro pin fins
,”
Int. J. Heat Mass Transfer
70
,
856
(
2014
).
11.
D.
Jung
,
H.
Lee
,
D.
Kong
,
E.
Cho
,
K. W.
Jung
,
C. R.
Kharangate
,
M.
Iyengar
,
C.
Malone
,
M.
Asheghi
,
K. E.
Goodson
, and
H.
Lee
, “
Thermal design and management of micro-pin fin heat sinks for energy-efficient three-dimensional stacked integrated circuits
,”
Int. J. Heat Mass Transfer
175
,
121192
(
2021
).
12.
A.
Vangeffelen
,
G.
Buckinx
,
M. R.
Vetrano
, and
M.
Baelmans
, “
Friction factor for steady periodically developed flow in micro- and mini-channels with arrays of offset strip fins
,”
Phys. Fluids
33
,
103610
(
2021
).
13.
E.
Hamidi
,
P. B.
Ganesan
,
R. K.
Sharma
, and
K. W.
Yong
, “
Computational study of heat transfer enhancement using porous foams with phase change materials: A comparative review
,”
Renewable Sustainable Energy Rev.
176
,
113196
(
2023
).
14.
C.
Yu
,
X.
Zhu
,
Z.
Li
,
Y.
Ma
,
M.
Yang
, and
H.
Zhang
, “
Optimization of elliptical pin-fin microchannel heat sink based on artificial neural network
,”
Int. J. Heat Mass Transfer
205
,
123928
(
2023
).
15.
A.
Žukauskas
,
Heat Transfer From Tubes in Crossflow
(
Elsevier
,
1972
).
16.
Y.
Zhang
and
Z.
Chen
, “
The effect of a gap between layers on the heat transfer performance of aligned tube banks
,”
Heat Transfer Eng.
13
,
33
(
1992
).
17.
W. A.
Khan
,
J. R.
Culham
, and
M. M.
Yovanovich
, “
Convection heat transfer from tube banks in crossflow: Analytical approach
,”
Int. J. Heat Mass Transfer
49
,
4831
(
2006
).
18.
S.-Y.
Yoo
,
H.-K.
Kwon
, and
J.-H.
Kim
, “
A study on heat transfer characteristics for staggered tube banks in cross-flow
,”
J. Mech. Sci. Technol.
21
,
505
(
2007
).
19.
J. M.
Gorman
,
E. M.
Sparrow
, and
J.
Ahn
, “
In-line tube-bank heat exchangers: Arrays with various numbers of thermally participating tubes
,”
Int. J. Heat Mass Transfer
132
,
837
(
2019
).
20.
R.
Hilpert
, “
Wärmeabgabe von geheizten drähten und rohren im luftstrom
,”
Forsch. Ing-Wes.
4
,
215
(
1933
).
21.
S. W.
Churchill
and
M.
Bernstein
, “
A correlating equation for forced convection from gases and liquids to a circular cylinder in crossflow
,”
J. Heat Transfer
99
,
300
306
(
1977
).
22.
E. M.
Sparrow
,
J. P.
Abraham
, and
J. C.
Tong
, “
Archival correlations for average heat transfer coefficients for non-circular and circular cylinders and for spheres in cross-flow
,”
Int. J. Heat Mass Transfer
47
,
5285
(
2004
).
23.
H.
Lee
,
M.
Kang
,
K. W.
Jung
,
C. R.
Kharangate
,
S.
Lee
,
M.
Iyengar
,
C.
Malone
,
M.
Asheghi
,
K. E.
Goodson
, and
H.
Lee
, “
An artificial neural network model for predicting frictional pressure drop in micro-pin fin heat sink
,”
Appl. Therm. Eng.
194
,
117012
(
2021
).
24.
K.
Kim
,
H.
Lee
,
M.
Kang
,
G.
Lee
,
K.
Jung
,
C. R.
Kharangate
,
M.
Asheghi
,
K. E.
Goodson
, and
H.
Lee
, “
A machine learning approach for predicting heat transfer characteristics in micro-pin fin heat sinks
,”
Int. J. Heat Mass Transfer
194
,
123087
(
2022
).
25.
R. S.
Prasher
,
J.
Dirner
,
J.-Y.
Chang
,
A.
Myers
,
D.
Chau
,
D.
He
, and
S.
Prstic
, “
Nusselt number and friction factor of staggered arrays of low aspect ratio micropin-fins under cross flow for water as fluid
,”
J. Heat Transfer
129
,
141
153
(
2007
).
26.
D. E.
Metzger
,
W. B.
Shepard
, and
S. W.
Haley
, “
Row resolved heat transfer variations in pin-fin arrays including effects of non-uniform arrays and flow convergence
,” in
ASME International Gas Turbine Conference and Exhibit
,
1986
.
27.
M.
Liu
,
D.
Liu
,
S.
Xu
, and
Y.
Chen
, “
Experimental study on liquid flow and heat transfer in micro square pin fin heat sink
,”
Int. J. Heat Mass Transfer
54
,
5602
(
2011
).
28.
X.
Chen
and
T. D.
Papathanasiou
, “
The transverse permeability of disordered fiber arrays: A statistical correlation in terms of the mean nearest interfiber spacing
,”
Transp. Porous Media
71
,
233
(
2008
).
29.
D.
Lee
,
J.
Ahn
, and
S.
Shin
, “
Uneven longitudinal pitch effect on tube bank heat transfer in cross flow
,”
Appl. Therm. Eng.
51
,
937
(
2013
).
30.
F.
Zafar
and
M. M.
Alam
, “
A low Reynolds number flow and heat transfer topology of a cylinder in a wake
,”
Phys. Fluids
30
,
083603
(
2018
).
31.
W.
Zhang
,
H.
Zhu
, and
G.
Li
, “
Experimental study of heat transfer on the internal surfaces of a double-wall structure with pin fin array
,”
Energies
13
,
6573
(
2020
).
32.
T.
Hulikal Chakrapani
,
H.
Bazyar
,
R. G. H.
Lammertink
,
S.
Luding
, and
W. K.
den Otter
, “
The permeability of pillar arrays in microfluidic devices: An application of Brinkman's theory towards wall friction
,”
Soft Matter
19
,
436
(
2023
).
33.
C. R.
Kharangate
,
K.
Wook Jung
,
S.
Jung
,
D.
Kong
,
J.
Schaadt
,
M.
Iyengar
,
C.
Malone
,
H.
Lee
,
M.
Asheghi
, and
K. E.
Goodson
, “
Experimental investigation of embedded micropin-fins for single-phase heat transfer and pressure drop
,”
J. Electron. Packag.
140
,
021001
(
2018
).
34.
K.
He
and
L.-Z.
Zhang
, “
Fluid flow and heat transfer of cross flow hollow fiber membrane contactors with randomly distributed fibers: A topological study
,”
Int. J. Heat Mass Transfer
135
,
186
(
2019
).
35.
R.
Jiang
,
M.
Yang
,
S.
Chen
,
S.-M.
Huang
, and
X.
Yang
, “
Fluid flow and heat transfer across an elliptical hollow fiber membrane tube bank with randomly distributed features
,”
Int. J. Heat Mass Transfer
76
,
559
(
2014
).
36.
G.
Choi
,
S. J.
Kim
, and
S.
Shin
, “
Neural network-based regression for heat transfer and fluid flow over in-line cylinder arrays with random pitch distances at low Reynolds number
,”
Eng. Appl. Comput. Fluid Mech.
17
,
2288235
(
2023
).
37.
Y.
Islamoglu
and
A.
Kurt
, “
Heat transfer analysis using ANNs with experimental data for air flowing in corrugated channels
,”
Int. J. Heat Mass Transfer
47
,
1361
1365
(
2004
).
38.
S.
Lee
and
D.
You
, “
Data-driven prediction of unsteady flow over a circular cylinder using deep learning
,”
J. Fluid Mech.
879
,
217
(
2019
).
39.
M.
Raissi
,
P.
Perdikaris
, and
G. E.
Karniadakis
, “
Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
,”
J. Comput. Phys.
378
,
686
(
2019
).
40.
S. L.
Brunton
,
B. R.
Noack
, and
P.
Koumoutsakos
, “
Machine learning for fluid mechanics
,”
Annu. Rev. Fluid Mech.
52
,
477
(
2020
).
41.
G. E.
Karniadakis
,
I. G.
Kevrekidis
,
L.
Lu
,
P.
Perdikaris
,
S.
Wang
, and
L.
Yang
, “
Physics-informed machine learning
,”
Nat. Rev. Phys.
3
,
422
(
2021
).
42.
M.
Ma
,
J.
Lu
, and
G.
Tryggvason
, “
Using statistical learning to close two-fluid multiphase flow equations for a simple bubbly system
,”
Phys. Fluids
27
,
092101
(
2015
).
43.
J.-X.
Wang
,
J.-L.
Wu
, and
H.
Xiao
, “
Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data
,”
Phys. Rev. Fluids
2
,
034603
(
2017
).
44.
M.
Raissi
and
G. E.
Karniadakis
, “
Hidden physics models: Machine learning of nonlinear partial differential equations
,”
J. Comput. Phys.
357
,
125
(
2018
).
45.
N.
Zobeiry
and
K. D.
Humfeld
, “
A physics-informed machine learning approach for solving heat transfer equation in advanced manufacturing and engineering applications
,”
Eng. Appl. Artif. Intell.
101
,
104232
(
2021
).
46.
A.
Habib
and
U.
Yildirim
, “
Developing a physics-informed and physics-penalized neural network model for preliminary design of multi-stage friction pendulum bearings
,”
Eng. Appl. Artif. Intell.
113
,
104953
(
2022
).
47.
D. P.
Kingma
and
J.
Ba
, “
Adam: A method for stochastic optimization
,” arXiv:1412.6980 (
2014
).
48.
Y.
Zhou
and
M. W.
Yiu
, “
Flow structure, momentum and heat transport in a two-tandem-cylinder wake
,”
J. Fluid Mech.
548
,
17
48
(
2006
).
49.
D.
Sumner
, “
Two circular cylinders in cross-flow: A review
,”
J. Fluids Struct.
26
,
849
(
2010
).
50.
P. W.
Bearman
, “
Circular cylinder wakes and vortex-induced vibrations
,”
J. Fluids Struct.
27
,
648
(
2011
).
51.
A.
Zenklusen
,
S.
Kenjereš
, and
P.
Rudolf von Rohr
, “
Vortex shedding in a highly porous structure
,”
Chem. Eng. Sci.
106
,
253
(
2014
).
52.
Y.
Zhou
and
M.
Mahbub Alam
, “
Wake of two interacting circular cylinders: A review
,”
Int. J. Heat Fluid Flow
62
,
510
(
2016
).
53.
A. J.
Chorin
, “
Numerical solution of the Navier-Stokes equations
,”
Math. Comput.
22
,
745
(
1968
).
54.
J. C.
Adams
,
P. N.
Swarztrauber
, and
R.
Sweet
, “
FISHPACK90: Efficient FORTRAN subprograms for the solution of separable elliptic partial differential equations
,” in
Astrophysics Source Code Library ASCL,
2016
.
55.
F. H.
Harlow
and
J. E.
Welch
, “
Numerical calculation of time‐dependent viscous incompressible flow of fluid with free surface
,”
Phys. Fluids
8
,
2182
(
1965
).
56.
C.-W.
Shu
and
S.
Osher
, “
Efficient implementation of essentially non-oscillatory shock-capturing schemes
,”
J. Comput. Phys.
77
,
439
(
1988
).
57.
Y.-H.
Tseng
and
J. H.
Ferziger
, “
A ghost-cell immersed boundary method for flow in complex geometry
,”
J. Comput. Phys.
192
,
593
(
2003
).
58.
B.
Sharman
,
F. S.
Lien
,
L.
Davidson
, and
C.
Norberg
, “
Numerical predictions of low Reynolds number flows over two tandem circular cylinders
,”
Int. J. Numer. Methods Fluids
47
,
423
(
2005
).
59.
J. G.
Knudsen
,
D. L.
Katz
, and
R. E.
Street
, “
Fluid dynamics and heat transfer
,”
Phys. Today
12
(
3
),
40
(
1959
).
60.
H. M.
Blackburn
and
R. D.
Henderson
, “
A study of two-dimensional flow past an oscillating cylinder
,”
J. Fluid Mech.
385
,
255
(
1999
).
61.
D.
Barkley
and
R. D.
Henderson
, “
Three-dimensional Floquet stability analysis of the wake of a circular cylinder
,”
J. Fluid Mech.
322
,
215
(
1996
).
62.
F. P.
Incropera
,
D. P.
DeWitt
,
T. L.
Bergman
, and
A. S.
Lavine
,
Fundamentals of Heat and Mass Transfer
(
Wiley
,
New York
,
1996
).
63.
C.
Roe
,
X.
Feng
,
G.
White
,
R.
Li
,
H.
Wang
,
X.
Rui
,
C.
Li
,
F.
Zhang
,
V.
Null
,
M.
Parkes
,
Y.
Patel
,
Y.
Wang
,
H.
Wang
,
M.
Ouyang
,
G.
Offer
, and
B.
Wu
, “
Immersion cooling for lithium-ion batteries—A review
,”
J. Power Sources
525
,
231094
(
2022
).
64.
H.
Lee
,
G.
Lee
,
K.
Kim
,
D.
Kong
, and
H.
Lee
, “
Multimodal machine learning for predicting heat transfer characteristics in micro-pin fin heat sinks
,”
Case Stud. Therm. Eng.
57
,
104331
(
2024
).
65.
N.
Fallahtafti
,
S.
Rangarajan
,
Y.
Hadad
,
C.
Arvin
,
K.
Sikka
,
C. H.
Hoang
,
G.
Mohsenian
,
V.
Radmard
,
S.
Schiffres
, and
B.
Sammakia
, “
Shape optimization of hotspot targeted micro pin fins for heterogeneous integration applications
,”
Int. J. Heat Mass Transfer
192
,
122897
(
2022
).
66.
M. P.
Vasilev
,
R. S.
Abiev
, and
R.
Kumar
, “
Effect of circular pin-fins geometry and their arrangement on heat transfer performance for laminar flow in microchannel heat sink
,”
Int. J. Therm. Sci.
170
,
107177
(
2021
).
67.
L.
Xu
,
Y.
Xu
,
H.
Gu
,
S.
Qiu
,
A. S.
Mujumdar
, and
P.
Xu
, “
Thermal-hydraulic performance of flat-plate microchannel with fractal tree-like structure and self-affine rough wall
,”
Eng. Appl. Comput. Fluid Mech.
17
,
e2153174
(
2023
).
You do not currently have access to this content.