To analyze the mechanism underlying preshock desensitization of heterogeneous explosives, two-dimensional, meso-resolved simulations were conducted to capture the shock-to-detonation transition (SDT) process in mixtures of liquid nitromethane (NM) with air-filled cavities. These simulations explicitly consider temperature-dependent Arrhenius chemical kinetics and a statistically significant number of heterogeneities, without relying on phenomenological models to account for the meso-scale effects of these heterogeneities. The simulations successfully capture the preshock desensitization phenomenon in heterogeneous explosives. For a weak preshock (where the timescale of cavity collapse is similar to the characteristic time that the preshock sweeps through the cavity), the double-shocked heterogeneous NM mixture exhibits a significantly longer SDT time (i.e., quantified as detonation overtake time tot) than in the single-shock scenario with the same post-shock pressure, indicating preshock desensitization occurs. The fact that the cavities are collapsed by the preshock and the lower post-shock temperature indicates that preshock desensitization is governed by a combined mechanism of mesoscale heterogeneity removal and a lower post-shock temperature. Both partially and fully desensitized effects are observed. In the partially desensitized case, no hot spots are formed behind the preshock, and the SDT process is initiated by the second shock. In contrast, the fully desensitized effect exhibits minimal occurrence of strong chemical reactions behind the second shock, with an SDT being triggered after the shock coalescence. There is critical threshold of post-shock temperature behind the second shock that can achieve SDT before shock coalescence under a weak preshock, distinguishing partially vs fully desensitized effects. The critical threshold value mentioned above is likely to be equal to the critical initiation temperature (rather than pressure) in homogeneous NM under single-shock scenarios.

1.
H.
Tariq
,
Y.
Liu
,
F.
Huang
, and
Y.
Luo
, “
Desensitization by pre-shocking in heterogeneous explosives and its numerical modeling
,”
Cent. Eur. J. Energ. Mater.
13
,
357
379
(
2016
).
2.
H.
Tariq
and
Y.
Liu
, “
Single and double shock initiation modeling for high explosive materials in last three decades
,”
IOP Conf. Ser.–Mater. Sci.
146
,
012041
(
2016
).
3.
C. A.
Handley
,
B. D.
Lambourn
,
N. J.
Whitworth
,
H. R.
James
, and
W. J.
Belfield
, “
Understanding the shock and detonation response of high explosives at the continuum and mesoscales
,”
Appl. Phys. Rev.
5
,
011303
(
2018
).
4.
W.
Peng
,
S.
Yang
,
X.
Zhang
,
J.
Shu
,
K.
Huang
,
H.
Pei
, and
Y.
Sun
, “
Numerical and experimental study of double-shock desensitization in triamino-tri-nitro-benzene based explosives
,”
Phys. Fluids
35
,
117120
(
2023
).
5.
A. W.
Campbell
,
W. C.
Davis
,
J. B.
Ramsay
, and
J. R.
Travis
, “
Shock initiation of solid explosives
,”
Phys. Fluids
4
,
511
521
(
1961
).
6.
E. F.
Gittings
, “
Initiation of a solid explosive by a short duration shock
,” in
4th Symposium (International) on Detonation
(
Office of Naval Research
,
White Oak, MD
,
1965
), pp.
373
378
.
7.
R. E.
Setchell
, “
Effects of precursor waves in shock initiation of granular explosives
,”
Combust. Flame
54
,
171
182
(
1983
).
8.
S. G.
Andreev
,
M. M.
Boiko
, and
V. S.
Solov'ev
, “
Detonation initiation in step loading
,”
Combust. Explos., Shock Waves
12
,
102
105
(
1976
).
9.
V. I.
Tarzhanov
, “
Detonation velocity of shock-compressed cast TNT
,”
Combust. Explos., Shock Waves
12
,
810
814
(
1976
).
10.
C. L.
Mader
and
J. D.
Kershner
, “
Three-dimensional modeling of explosive desensitization by preshocking
,”
J. Energy Mater.
3
,
35
55
(
1985
).
11.
A. W.
Campbell
and
J. R.
Tarvis
, “
The shock desensitization of PBX-9404 and Composition B-3
,” in
8th Symposium (International) on Detonation
(
Office of Naval Research
,
Albuquerque, NM
,
1985
), pp.
1
12
.
12.
M. J.
Burns
,
R. L.
Gustavsen
, and
B. D.
Bartram
, “
One-dimensional plate impact experiments on the cyclotetramethylene tetranitramine (HMX) based explosive EDC32
,”
J. Appl. Phys.
112
,
064910
(
2012
).
13.
P.
Zi
,
J.
Chen
,
R.
Zhang
,
B.
Zhong
, and
X.
Zhang
, “
Double Shock Experiments on PBX Explosive JOB‐9003
,”
Propellants, Explo., Pyrotech.
42
,
784
790
(
2017
).
14.
R. N.
Mulford
,
S.
Sheffield
, and
R. R.
Alcon
, “
Initiation of preshocked high explosives PBX-9404, PBX-9502, PBX-9501, monitored with in-material magnetic gauging
,” in
10th Symposium (International) on Detonation
(
Office of Naval Research
,
Boston
,
1993
), pp.
459
467
.
15.
R. N.
Mulford
,
S.
Sheffield
, and
R. R.
Alcon
, “
Preshock desensitization of PBX explosives
,”
AIP Conf. Proc.
309
,
1405
1408
(
1994
).
16.
R. L.
Gustavsen
,
S. A.
Sheffield
, and
R. R.
Alcon
, “
Double shock initiation of the HMX based explosive EDC-37
,”
AIP Conf. Proc.
620
,
999
1002
(
2002
).
17.
R. L.
Gustavsen
,
S. A.
Sheffield
, and
R. R.
Alcon
, “
Measurements of shock initiation in the tri-amino-tri-nitro-benzene based explosive PBX 9502: Wave forms from embedded gauges and comparison of four different material lots
,”
J. Appl. Phys.
99
,
114907
(
2006
).
18.
D. A.
Salisbury
,
P.
Taylor
,
R. E.
Winter
,
R. L.
Gustavsen
,
S. A.
Sheffield
, and
R. R.
Alcon
, “
Single and double shock initiation of EDC37
,” in
12th Symposium (International) on Detonation
(
Office of Naval Research
,
San Diego, CA
,
2002
), pp.
271
280
.
19.
C. M.
Tarver
,
T. M.
Cook
,
P. A.
Urtiew
, and
W. C.
Tao
, “
Multiple Shock Initiation of LX-17
,” in
10th Symposium (International) on Detonation
(
Office of Naval Research
,
Boston
,
1993
), pp.
696
703
.
20.
W.
Peng
,
S.
Yang
,
J.
Shu
,
L.
Chen
, and
X.
Zhang
, “
Experimental investigation of shock response to an insensitive explosive under double-shock wave
,”
Int. J. Impact Eng.
173
,
104489
(
2023
).
21.
H. R.
James
and
B. D.
Lamboum
, “
On the systematics of particle velocity histories in the shock-to-detonation transition regime
,”
J. Appl. Phys.
100
,
084906
(
2006
).
22.
C. A.
Handley
, “
The CREST reactive burn model
,”
AIP Conf. Proc.
955
,
373
376
(
2007
).
23.
C. A.
Handley
,
N.
Whitworth
,
H.
James
,
B.
Lambourn
, and
M.-A.
Maheswaran
, “
The CREST reactive-burn model for explosives
,”
EPJ Web Conf.
10
,
00004
(
2010
).
24.
H.
James
and
B.
Lambourn
, “
Shock desensitization in explosives: An exploration of two competing hypotheses
,” in
14th Symposium (International) on Detonation
(
Office of Naval Research
,
Coeur d'Alene, Idaho
,
2010
), pp.
1172
1181
.
25.
G.
DeOliveira
,
A. K.
Kapila
,
D. W.
Schwendeman
,
J. B.
Bdzil
,
W. D.
Henshaw
, and
C. M.
Tarver
, “
Detonation diffraction, dead zones, and the ignition-and-growth model
,” in
13th Symposium (International) on Detonation
(
Office of Naval Research
,
Norfolk, Virginia
,
2006
), pp.
13
23
.
26.
N.
Desbiens
,
C.
Matignon
, and
R.
Sorin
, “
Temperature-based model for condensed-phase explosive detonation
,”
J. Phys: Conf. Ser.
500
,
152004
(
2014
).
27.
C. A.
Handley
and
H. R.
James
, “
A comparison between entropy, temperature and pressure-dependent reactive-burn models
,”
AIP Conf. Proc.
1426
,
519
524
(
2012
).
28.
A.
Sollier
,
A.
Lefrancois
,
L.
Jacquet
,
P.
Hereil
, and
E.
Bouton
, “
Double-Shock initiation of a TATB based explosive: Influence of preshock pressure and duration on the desensitization effect
,” in
16th Symposium (International) on Detonation
(
Office of Naval Research
,
Maryland
,
2019
), pp.
505
514
.
29.
L.
Michael
and
N.
Nikiforakis
, “
A hybrid formulation for the numerical simulation of condensed phase explosives
,”
J. Comput. Phys.
316
,
193
217
(
2016
).
30.
L.
Michael
and
N.
Nikiforakis
, “
The temperature field around collapsing cavities in condensed-phase explosives
,” in
15th Symposium (International) on Detonation
(
Office of Naval Research
,
San Francisco
,
2014
), pp.
60
70
.
31.
L.
Michael
and
N.
Nikiforakis
, “
The evolution of the temperature field during cavity collapse in liquid nitromethane. Part I: Inert case
,”
Shock Waves
29
,
153
172
(
2019
).
32.
L.
Michael
and
N.
Nikiforakis
, “
The evolution of the temperature field during cavity collapse in liquid nitromethane. Part II: Reactive case
,”
Shock Waves
29
,
173
191
(
2019
).
33.
L.
Michael
and
N.
Nikiforakis
, “
Control of condensed-phase explosive behavior by means of cavities and solid particles
,” in
Active Flow and Combustion Control Conference
(
Springer
,
2018
), pp.
289
303
.
34.
X.
Mi
,
L.
Michael
,
E.
Ioannou
,
N.
Nikiforakis
,
A.
Higgins
, and
H.
Ng
, “
Meso-resolved simulations of shock-to-detonation transition in nitromethane with air-filled cavities
,”
J. Appl. Phys.
125
,
245901
(
2019
).
35.
X.
Mi
,
L.
Michael
,
N.
Nikiforakis
, and
A.
Higgins
, “
Effect of spatial distribution of mesoscale heterogeneities on the shock-to-detonation transition in liquid nitromethane
,”
Combust. Flame
222
,
392
410
(
2020
).
36.
F.
Petitpas
,
R.
Saurel
,
E.
Franquet
, and
A.
Chinnayya
, “
Modelling detonation waves in condensed energetic materials: Multiphase CJ conditions and multidimensional computations
,”
Shock Waves
19
,
377
401
(
2009
).
37.
S.
Schoch
,
N.
Nikiforakis
,
B. J.
Lee
, and
R.
Saurel
, “
Multi-phase simulation of ammonium nitrate emulsion detonations
,”
Combust. Flame
160
,
1883
1899
(
2013
).
38.
M.
Short
,
C.
Chiquete
,
J. B.
Bdzil
, and
J. J.
Quirk
, “
Detonation diffraction in a circular arc geometry of the insensitive high explosive PBX 9502
,”
Combust. Flame
196
,
129
143
(
2008
).
39.
T. L.
Jackson
,
J.
Zhang
, and
M.
Short
, “
Multiscale approach to shock to detonation transition in energetic materials
,”
Propellants, Explos., Pyrotech.
45
,
316
329
(
2020
).
40.
Z.
Wang
,
K.
Xue
, and
X.
Mi
, “
Effect of shock impedance of mesoscale inclusions on the shock-to-detonation transition in liquid nitromethane
,”
Phys. Fluids
36
,
023336
(
2024
).
41.
R.
Menikoff
, “
Hot spot formation from shock reflections
,”
Shock Waves
21
,
141
148
(
2011
).
42.
J.
Field
, “
Hot spot ignition mechanisms for explosives
,”
Acc. Chem. Res.
25
,
489
496
(
1992
).
43.
S.
Cochran
and
J.
Chan
, “
Shock initiation and detonation models in one and two dimensions
,”
Technical Report CID-18024 Report No. 2
(
Lawrence Livermore Laboratory, California University
,
Livermore, CA
,
1979
).
44.
R.
Saurel
,
F.
Petitpas
, and
R.
Berry
, “
Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures
,”
J. Comput. Phys.
228
,
1678
1712
(
2009
).
45.
E.
Lee
,
H.
Hornig
, and
J.
Kury
, “
Adiabatic expansion of high explosive detonation products
,”
Report No. UCRL-50422
(
University of California Radiation Laboratory
,
Livermore, CA
,
1968
).
46.
D.
Hardesty
, “
An investigation of the shock initiation of liquid nitromethane
,”
Combust. Flame
27
,
229
251
(
1976
).
47.
C.
Tarver
and
P. A.
Urtiew
, “
Theory and modeling of liquid explosive detonation
,”
J. Energy Mater.
28
,
299
317
(
2010
).
48.
R.
Ripley
,
F.
Zhang
, and
F.
Lien
, “
Detonation interaction with metal particles in explosives
,” in
13th Symposium (International) on Detonation
(
Office of Naval Research
,
Norfolk, Virginia
,
2006
), pp.
214
223
.
49.
A. W.
Campbell
,
W. C.
Davis
, and
J. R.
Travis
, “
Shock initiation of detonation in liquid explosives
,”
Phys. Fluids
4
,
498
510
(
1961
).
50.
D. R.
Hardesty
and
P. C.
Lysne
, “
Shock initiation and detonation properties of homogeneous explosives
,” “
Report No. SLA 74-0165
,” (
Sandia National Laboratory
,
Livermore, CA
,
1974
).
51.
I.
Voskoboinikov
,
V.
Bogomolov
, and
A.
Apin
, “
Calculation of the initiation pressure of an explosion of homogeneous explosives by a shock wave
,”
Fiz. Goreniya Vzryva
4
,
45
49
(
1968
).
52.
S. A.
Sheffield
,
R.
Engelke
, and
R. R.
Alcon
, “
In-situ study of the chemically driven flow fields in initiating homogeneous and heterogeneous nitromethane explosives
,” in
9th Symposium (International) on Detonation
(
Office of Naval Research
,
Portland, OR
,
1989
), pp.
54
72
.
53.
B.
Leal-Crouzet
,
G.
Baudin
, and
H. N.
Presles
, “
Shock initiation of detonation in nitromethane
,”
Combust. Flame
122
,
463
473
(
2000
).
54.
J. B.
Ramsay
and
A.
Popolato
, “
Analysis of shock wave and initiation data for solid explosives
,” in
4th Symposium (International) on Detonation
(
Office of Naval Research
,
White Oak, MD
,
1965
), pp.
233
238
.
55.
S.
Sheffield
,
D.
Dattelbaum
,
R.
Engelke
,
R. R.
Alcon
,
B.
Crouzet
,
D. L.
Robbins
,
D. B.
Stahl
, and
R. L.
Gustavsen
, “
Homogeneous shock initiation process in neat and chemically sensitized nitromethane
,” in
13th Symposium (International) on Detonation
(
Office of Naval Research
,
Norfolk, Virginia
,
2006
), pp.
401
409
.
56.
D.
Dattelbaum
,
S.
Sheffield
,
D.
Stahl
,
A.
Dattelbaum
,
W.
Trott
, and
R.
Engelke
, “
In-fluence of hot spot features on the initiation characteristics of heterogeneous nitromethane
,” in
14th Symposium (International) on Detonation
(
Office of Naval Research
,
Arlington
,
2010
), pp.
611
621
.
57.
A.
Higgins
,
J.
Loiseau
, and
X.
Mi
, “
Detonation velocity/diameter relation in gelled explosive with inert inclusions
,”
AIP Conf. Proc.
1979
,
100019
(
2018
).
58.
L.
Michael
, “
Numerical simulations of shock-induced void collapse in liquid explosives
,” Ph.D. thesis (
University of Cambridge
,
2013
).
59.
E.
Toro
,
Riemann Solvers and Numerical Methods for Fluid Dynamics
, 3rd ed. (
Springer
,
2009
).
60.
G.
Strang
, “
On the construction and comparison of difference schemes
,”
SIAM J. Numer. Anal.
5
,
506
517
(
1968
).
61.
G.
Morgan
, “
The Euler equations with a single-step Arrhenius reaction
,”
Ph. D. thesis
(
University of Cambridge
,
2013
).
62.
C.
Kiyanda
,
G.
Morgan
,
N.
Nikiforakis
, and
H.
Ng
, “
High resolution GPU-based flow simulation of the gaseous methane-oxygen detonation structure
,”
J. Vis.
18
,
273
276
(
2015
).
63.
X.
Mi
,
A.
Higgins
,
H.
Ng
,
C.
Kiyanda
, and
N.
Nikiforakis
, “
Propagation of gaseous detonation waves in a spatially inhomogeneous reactive medium
,”
Phys. Rev. Fluids
2
,
053201
(
2017
).
64.
X.
Mi
,
A.
Higgins
,
C.
Kiyanda
,
H.
Ng
, and
N.
Nikiforakis
, “
Effect of spatial inhomogeneities on detonation propagation with yielding confinement
,”
Shock Waves
28
,
993
1009
(
2018
).
65.
M.
Ozlem
,
D. W.
Schwendeman
,
A. K.
Kapila
, and
W. D.
Henshaw
, “
A numerical study of shock-induced cavity collapse
,”
Shock Waves
22
,
89
117
(
2012
).
You do not currently have access to this content.