Gas–liquid two-phase bubbly flow has significant applications across multiple fields, including reactor design and separation processes in chemical engineering, oil well extraction and pipeline transportation in the oil and gas industry, cooling systems in the nuclear industry, and wastewater treatment in environmental engineering. Bubble monitoring is crucial in these applications as it can enhance mass and heat transfer efficiency, improve flow stability, and ensure the safe operation of systems. This study developed an advanced algorithm aimed at precisely detecting and segmenting small bubbles at the gas–liquid interface using semantic segmentation techniques. This technology leverages deep learning models to analyze images, automatically identifying bubbles at the gas–liquid interface and accurately delineating their boundaries. The technique provides precise contours for each bubble, offering essential foundational data for further bubble dynamics analysis. Building on this, the deep learning detection algorithm was combined with the Deep Simple Online and Realtime Tracking with a Deep Association Metric (DeepSORT) algorithm, tracking algorithm, enabling the system to rapidly and accurately identify and track the movement of the same bubble across consecutive frames.

1.
J.
Zhang
,
J.
Xu
, and
Z.
Chen
, “
Dispersion behavior of liquid–liquid and gas–liquid two‐phase flow in micro‐packed beds
,”
AIChE J.
70
(
2
),
e18257
(
2024
).
2.
D.
Sun
,
Z.
Xiao
,
Z.
Feng
,
H.
Yuan
, and
W.
Cui
, “
Influence of rotation speed and gas content on the transient gas–liquid two-phase flow of an electric submersible pump
,”
Machines
11
(
10
),
971
(
2023
).
3.
X.
Tao
,
K.
Sun
,
R.
Chen
,
M.
Suo
,
H.
Liu
,
Z.
Che
, and
T.
Wang
, “
Two-phase flow in porous metal foam flow fields of PEM fuel cells
,”
Chem. Eng. Sci.
282
,
119270
(
2023
).
4.
Y.
Yang
,
H.
Hu
,
H.
Wang
,
C.
Zhang
,
B.
Yang
, and
H.
Zhao
, “
Study on characteristics of phase-isolation caused by different classic axial flow swirlers in upward vertical gas-liquid two-phase flow
,”
Exp. Therm. Fluid Sci.
150
,
111031
(
2024
).
5.
L.
Zhang
and
S.
Zhang
, “
Analysis and identification of gas-liquid two-phase flow pattern based on multi-scale power spectral entropy and pseudo-image encoding
,”
Energy
282
,
128835
(
2023
).
6.
D.
Wu
,
Y.
Ren
,
H.
Sørensen
,
H.
Qian
, and
J.
Mou
, “
Gas-liquid flow patterns visualization in a self-priming centrifugal pump
,”
Flow Meas. Instrum.
92
,
102389
(
2023
).
7.
A. M.
Aliyu
,
R.
Choudhury
,
B.
Sohani
,
J.
Atanbori
,
J. X.
Ribeiro
,
S. K. B.
Ahmed
, and
R.
Mishra
, “
An artificial neural network model for the prediction of entrained droplet fraction in annular gas-liquid two-phase flow in vertical pipes
,”
Int. J. Multiphase Flow
164
,
104452
(
2023
).
8.
B.
Lai
,
Z.
Ke
,
Z.
Wang
,
R.
Zhu
,
R.
Gao
,
Y.
Mao
, and
Y.
Zhang
, “
A lattice Boltzmann front-tracking interface capturing method based on neural network for gas-liquid two-phase flow
,”
Int. J. Comput. Fluid Dyn.
37
(
1
),
49
66
(
2023
).
9.
M.
Wei
,
H.
Li
,
S.
Li
, and
M.
Tian
, “
Experimental study on the air-steam bubble condensation characteristics in subcooled water
,”
Int. Commun. Heat Mass Transfer
141
,
106570
(
2023
).
10.
N. A.
Di Spirito
,
S.
Mirzaagha
,
E.
Di Maio
,
N.
Grizzuti
, and
R.
Pasquino
, “
Bubble rupture and bursting velocity of complex fluids
,”
Langmuir
38
(
44
),
13429
13436
(
2022
).
11.
P.
Krýsa
and
M.
Šoóš
, “
Modelling of bubble breakage and coalescence in stirred and sparged bioreactor using the Euler-Lagrange approach
,”
Int. J. Heat Mass Transfer
199
,
123466
(
2022
).
12.
H. K.
Foroushan
and
H. A.
Jakobsen
, “
Experimental study of single bubble breakage in turbulent flow field: Evaluation of breakage models
,”
Chem. Eng. Sci.
253
,
117584
(
2022
).
13.
X.
Wang
,
C.
Zhu
,
T.
Fu
, and
Y.
Ma
, “
Bubble breakup with permanent obstruction in an asymmetric microfluidic T‐junction
,”
AIChE J.
61
(
3
),
1081
1091
(
2015
).
14.
C.
Ma
,
F.
Yang
,
Y.
Li
,
H.
Jia
,
X.
Xie
, and
W.
Gao
, “
Deep human-interaction and association by graph-based learning for multiple object tracking in the wild
,”
Int. J. Comput. Vision
129
,
1993
2010
(
2021
).
15.
H.
Yang
,
S.
Gao
,
X.
Wu
, and
Y.
Zhang
, “
Online multi-object tracking using KCF-based single-object tracker with occlusion analysis
,”
Multimedia Syst.
26
,
655
669
(
2020
).
16.
J.
Peng
,
T.
Wang
,
W.
Lin
,
J.
Wang
,
J.
See
,
S.
Wen
, and
E.
Ding
, “
TPM: Multiple object tracking with tracklet-plane matching
,”
Pattern Recognit.
107
,
107480
(
2020
).
17.
Z.
Zhou
,
W.
Luo
,
Q.
Wang
,
J.
Xing
, and
W.
Hu
, “
Distractor-aware discrimination learning for online multiple object tracking
,”
Pattern Recognit.
107
,
107512
(
2020
).
18.
F. M.
Philip
and
R.
Mukesh
, “
Multiple object tracking by employing shaped-based features and Kalman filter
,”
Int. J. Bus. Intell. Data Min.
13
(
1–3
),
331
346
(
2018
).
19.
D.
Comaniciu
,
V.
Ramesh
, and
P.
Meer
, “
Real-time tracking of non-rigid objects using mean shift
,” in
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2000), Cat. No. PR00662
(
IEEE
,
2000
), Vol.
2
, pp.
142
149
.
20.
J. Solà, “Quaternion kinematics for the error-state Kalman filter,” preprint arXiv:1711.02508 (2017).
21.
D.
He
,
W.
Xu
, and
F.
Zhang
, “
Kalman filters on differentiable manifolds
,” arXiv:2102.03804 (
2021
).
22.
Z.
Zhu
,
W.
Wu
,
W.
Zou
, and
J.
Yan
, “
End-to-end flow correlation tracking with spatial-temporal attention
,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(
IEEE
,
2018
), pp.
548
557
.
23.
C.
Huang
,
Q.
Zeng
,
F.
Xiong
, and
J.
Xu
, “
Space dynamic target tracking method based on five-frame difference and DeepSORT
,”
Sci. Rep.
14
(
1
),
6020
(
2024
).
24.
Z.
Luo
,
Y.
Bi
,
X.
Yang
,
Y.
Li
,
S.
Yu
,
M.
Wu
, and
Q.
Ye
, “
Enhanced YOLOv5s+ DeepSORT method for highway vehicle speed detection and multi-sensor verification
,”
Front. Phys.
12
,
1371320
(
2024
).
25.
W.
Sheng
,
J.
Shen
,
Q.
Huang
,
Z.
Liu
, and
Z.
Ding
, “
Multi-objective pedestrian tracking method based on YOLOv8 and improved DeepSORT
,”
Math. Biosci. Eng.
21
(
2
),
1791
1805
(
2024
).
26.
Y.
Zhang
,
C.
Wang
,
X.
Wang
,
W.
Zeng
, and
W.
Liu
, “
FairMOT: On the fairness of detection and re-identification in multiple object tracking
,”
Int. J. Comput. Vision
129
,
3069
3087
(
2021
).
27.
J.
Redmon
,
S.
Divvala
,
R.
Girshick
, and
A.
Farhadi
, “
You only look once: Unified, real-time object detection
,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(
IEEE
,
2016
), pp.
779
788
.
28.
Q.
Wang
,
B.
Wu
,
P.
Zhu
,
P.
Li
,
W.
Zuo
, and
Q.
Hu
, “
ECA-Net: Efficient channel attention for deep convolutional neural networks
,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(
IEEE
,
2020
), pp.
11534
11542
.
29.
Y.
Chen
,
X.
Yuan
,
R.
Wu
,
J.
Wang
,
Q.
Hou
, and
M. M.
Cheng
, “
YOLO-MS: Rethinking multi-scale representation learning for real-time object detection
,” arXiv:2308.05480 (
2023
).
30.
A.
Wang
,
H.
Chen
,
L.
Liu
,
K.
Chen
,
Z.
Lin
,
J.
Han
, and
G.
Ding
, “
YOLOV10: Real-time end-to-end object detection
,” arXiv:2405.14458 (
2024
).
31.
Z.
Song
and
K.
Shui
, “
Research on the acceleration effect of TensorRT in deep learning
,”
Sci. J. Intell. Syst. Res.
1
,
45
50
(
2019
), http://www.sjisr.org/download/sjisr-1-1-45-50.pdf.
32.
Z.
Wang
,
C.
Li
,
H.
Xu
, and
X.
Zhu
, “
Mamba YOLO: SSMs-based YOLO for object detection
,” arXiv:2406.05835 (
2024
).
33.
A.
Bewley
,
Z.
Ge
,
L.
Ott
,
F.
Ramos
, and
B.
Upcroft
, “
Simple online and realtime tracking
,” in
2016 IEEE International Conference on Image Processing (ICIP)
(
IEEE
,
2016
), pp.
3464
3468
.
34.
N.
Wojke
,
A.
Bewley
, and
D.
Paulus
, “Simple online and realtime tracking with a deep association metric,” in 2017 IEEE International Conference on Image Processing (ICIP) (IEEE,
2017
), pp.
3645
3649
.
35.
Y.
Du
,
Z.
Zhao
,
Y.
Song
,
Y.
Zhao
,
F.
Su
,
T.
Gong
, and
H.
Meng
, “
Strongsort: Make DeepSORT great again
,”
IEEE Trans. Multimedia
25
,
8725
8737
(
2023
).
36.
M.
Durve
,
S.
Orsini
,
A.
Tiribocchi
,
A.
Montessori
,
J. M.
Tucny
,
M.
Lauricella
,
A.
Camposeo
,
D.
Pisignano
, and
S.
Succi
, “
Benchmarking YOLOv5 and YOLOv7 models with DeepSORT for droplet tracking applications
,”
Eur. Phys. J. E
46
(
5
),
32
(
2023
).
37.
L.
Ma
,
D.
Meng
,
S.
Zhao
, and
B.
An
, “
Visual localization with a monocular camera for unmanned aerial vehicle based on landmark detection and tracking using YOLOv5 and DeepSORT
,”
Int. J. Adv. Rob. Syst.
20
(
3
),
3
6
(
2023
).
38.
P.
Carrinho
and
G.
Falcao
, “
Highly accurate and fast YOLOv4-based polyp detection
,”
Expert Syst. Appl.
232
,
120834
(
2023
).
You do not currently have access to this content.