Boundary lubrication with extremely thin films widely occurs in various situations, for instance, in micro-electromechanical system lubrication and hard disk drive lubrication. Lubrication performance is significantly affected by the surface layer properties and interactions between solids and liquids. However, the molecular dynamical behaviors are still unclear. Thus, our work considers the dynamical behaviors of molecules under boundary lubrication via molecular dynamics simulations. Different pressures and metal slab shapes are chosen as the variable conditions. The results indicate that a smooth metal slab model has a special conformation recovery process during compressing under medium pressures. After inducing shear velocity, the lubrication film exhibits sticky, stick–slip, or slip flows under different pressures. Sticky flow is accompanied by a conformation adjustment consisting of conformation recovery, chain alignment, and structure equilibrium, but there is no chain alignment step in the other two flow modes. The conformation recovery includes atomic adsorption onto the Fe wall under small and medium pressures. Under large pressures, the conformation recovery refers to atomic desorption phenomena. In addition, some properties, such as gyration and chain orientation, are strongly modified by the solid surface and show distinct differences along the pressing direction. Under the same simulation conditions, the rough wall model shows no slip behaviors attributed to the increased equivalent contact wall area and stronger pinning effect. Our work provides new insights into understanding the in-depth mechanism of boundary lubrication, providing theoretical guidance in developing advanced boundary lubrication techniques.

1.
T.
Reddyhoff
,
I. S. Y.
Ku
,
A. S.
Holmes
, and
H. A.
Spikes
, “
Friction modifier behaviour in lubricated MEMS devices
,”
Tribol. Lett.
41
,
239
(
2011
).
2.
R. J.
Waltman
, “
The stability of ultra-thin perfluoropolyether mixture films on the amorphous nitrogenated carbon surface
,”
J. Colloid Interface Sci.
313
,
608
(
2007
).
3.
W.
Al-Sallami
,
P.
Parsaeian
,
A.
Dorgham
, and
A.
Neville
, “
Effect of ionic liquids' chemistry on their lubrication behaviour under various contact pressures
,”
Tribol. Int.
151
,
106465
(
2020
).
4.
Z.
Tang
,
D.
Zhou
,
T.
Jia
,
D.
Pan
, and
C.
Zhang
, “
Investigation of lubricant transfer and distribution at head/disk interface in air-helium gas mixtures
,”
Friction
7
,
564
(
2019
).
5.
F.
Sadeghi
,
Elastohydrodynamic Lubrication
(
Woodhead Publishing
,
2010
).
6.
J.
Xu
,
J.
Nian
,
P.
Wang
,
Z.
Guo
, and
W.
Liu
, “
Elastic lubricious effect of solidlike boundary films in oil-starvation lubrication
,”
J. Phys. Chem. C
123
,
1677
(
2019
).
7.
J.
Li
,
J.
Li
,
S.
Yi
, and
K.
Wang
, “
Boundary slip of oil molecules at MoS2 homojunctions governing superlubricity
,”
ACS Appl. Mater. Interfaces
14
,
8644
(
2022
).
8.
I.
Dobryden
,
M.
Steponavičiūtė
,
D.
Hedman
,
V.
Klimkevičius
,
R.
Makuška
,
A.
Dėdinaitė
,
X.
Liu
,
R. W.
Corkery
, and
P. M.
Claesson
, “
Local wear of catechol-containing diblock copolymer layers: Wear volume, stick–slip, and nanomechanical changes
,”
J. Phys. Chem. C
125
,
21277
(
2021
).
9.
A. M.
Rahmani
,
Y.
Shao
,
M.
Jupiterwala
, and
C. E.
Colosqui
, “
Nanoscale flow past a colloidal cylinder confined in a slit channel: Lubrication theory and molecular dynamics analysis
,”
Phys. Fluids
27
,
082004
(
2015
).
10.
H.
Zhang
,
M.
Fukuda
,
H.
Washizu
,
T.
Kinjo
,
H.
Yoshida
,
K.
Fukuzawa
, and
S.
Itoh
, “
Shear thinning behavior of nanometer-thick perfluoropolyether films confined between corrugated solid surfaces: A coarse-grained molecular dynamics study
,”
Tribol. Int.
93
,
163
(
2016
).
11.
F. J.
Alexander
,
A. L.
Garcia
, and
B. J.
Alder
, “
Direct simulation Monte Carlo for thin‐film bearings
,”
Phys. Fluids
6
,
3854
(
1994
).
12.
C.
Cafolla
,
W.
Foster
, and
K.
Voïtchovsky
, “
Lubricated friction around nanodefects
,”
Sci. Adv.
6
,
eaaz3673
(
2020
).
13.
B.
Lyu
,
L.
Zhang
,
X.
Meng
, and
C.
Wang
, “
A boundary lubrication model and experimental study considering ZDDP tribofilms on reciprocating friction pairs
,”
Tribol. Lett.
70
,
65
(
2022
).
14.
L.
Bai
,
Y.
Meng
,
V.
Zhang
, and
Z. A.
Khan
, “
Effect of surface topography on ZDDP tribofilm formation during running-in stage subject to boundary lubrication
,”
Tribol. Lett.
70
,
10
(
2021
).
15.
A. K.
Baby
,
P. K.
Rajendrakumar
, and
D. K.
Lawrence
, “
Uncertainty analysis of friction and wear-rate of cylinder liner–piston ring tribo pair under boundary lubrication conditions
,”
J. Tribol.
146
,
021701
(
2023
).
16.
T.
Han
,
M.
Zhao
,
C.
Sun
,
R.
Zhao
,
W.
Xu
,
S.
Zhang
,
S.
Singh
,
J.
Luo
, and
C.
Zhang
, “
Macroscale superlubricity of hydrated anions in the boundary lubrication regime
,”
ACS Appl. Mater. Interfaces
15
,
42094
(
2023
).
17.
L.
Guo
,
L.
Pan
, and
Z.
Li
, “
Study on the sliding tribological behavior of oleic acid-modified mos2 under boundary lubrication
,”
Langmuir
39
,
14562
(
2023
).
18.
W.
Li
,
C.
Kumara
,
H.
Luo
,
H. M.
Meyer
III
,
X.
He
,
D.
Ngo
,
S. H.
Kim
, and
J.
Qu
, “
Ultralow boundary lubrication friction by three-way synergistic interactions among ionic liquid, friction modifier, and dispersant
,”
ACS Appl. Mater. Interfaces
12
,
17077
(
2020
).
19.
X.
Fan
,
W.
Li
,
H.
Fu
,
M.
Zhu
,
L.
Wang
,
Z.
Cai
,
J.
Liu
, and
H.
Li
, “
Probing the function of solid nanoparticle structure under boundary lubrication
,”
ACS Sustainable Chem. Eng.
5
,
4223
(
2017
).
20.
B.
Wang
,
K.
Gao
,
K.
Wang
,
Y.
Wang
,
Q.
Chang
, and
H.
Yang
, “
Induced decomposition and slip interface transformation of oleic acid enables ultralow wear in boundary lubrication
,”
Langmuir
40
,
1941
(
2024
).
21.
T.
Hirayama
,
R.
Kawamura
,
K.
Fujino
,
T.
Matsuoka
,
H.
Komiya
, and
H.
Onishi
, “
Cross-sectional imaging of boundary lubrication layer formed by fatty acid by means of frequency-modulation atomic force microscopy
,”
Langmuir
33
,
10492
(
2017
).
22.
H.
Wang
and
M. L.
Gee
, “
AFM lateral force calibration for an integrated probe using a calibration grating
,”
Ultramicroscopy
136
,
193
(
2014
).
23.
M. M.
Maru
,
C. M.
Almeida
,
R. F.
Silva
, and
C. A.
Achete
, “
Assessment of boundary lubrication in biodiesels by nanotribological tests
,”
Energy
55
,
273
(
2013
).
24.
K.
Sato
,
S.
Watanabe
, and
S.
Sasaki
, “
High friction mechanism of ZDDP tribofilm based on in situ AFM observation of nano-friction and adhesion properties
,”
Tribol. Lett.
70
,
94
(
2022
).
25.
R.
Xu
and
Y.
Leng
, “
Squeezing and stick–slip friction behaviors of lubricants in boundary lubrication
,”
Proc. Natl. Acad. Sci. U. S. A.
115
,
6560
(
2018
).
26.
Q.
Yang
and
F.
Duan
, “
Tribological properties of phosphate ester confined between iron-based surfaces
,”
Langmuir
40
,
3738
(
2024
).
27.
N.
Du
,
X.
Li
,
X.
Wei
,
Z.
Chen
,
S.
Lu
,
J.
Ding
,
C.
Feng
,
K.
Chen
,
J.
Qiao
,
D.
Zhang
, and
K. R.
Lee
, “
Atomistic insights into interfacial optimization mechanism for achieving ultralow-friction amorphous carbon films under solid–liquid composite conditions
,”
ACS Appl. Mater. Interfaces
15
,
53122
(
2023
).
28.
Q.
Xu
,
X.
Tang
,
J.
Zhang
,
Y.
Hu
, and
T.
Ma
, “
Unraveling tribochemistry and self-lubrication mechanism of polytetrafluoroethylene by reactive coarse-grained molecular dynamics simulations
,”
ACS Appl. Mater. Interfaces
15
,
45506
(
2023
).
29.
D. M.
Heyes
,
E. R.
Smith
,
D.
Dini
,
H. A.
Spikes
, and
T. A.
Zaki
, “
Pressure dependence of confined liquid behavior subjected to boundary-driven shear
,”
J. Chem. Phys.
136
,
134705
(
2012
).
30.
V.
Fadaei Naeini
,
M.
Björling
,
J. A.
Larsson
, and
R.
Larsson
, “
Unraveling the pressure-viscosity behavior and shear thinning in glycerol using atomic scale molecular dynamics simulations
,”
J. Mol. Liq.
390
,
122990
(
2023
).
31.
V. A.
Harmandaris
,
K. C.
Daoulas
, and
V. G.
Mavrantzas
, “
Molecular dynamics simulation of a polymer melt/solid interface: Local dynamics and chain mobility in a thin film of polyethylene melt adsorbed on graphite
,”
Macromolecules
38
,
5796
(
2005
).
32.
L.
Yelash
,
P.
Virnau
,
K.
Binder
, and
W.
Paul
, “
Slow process in confined polymer melts: Layer exchange dynamics at a polymer solid interface
,”
Phys. Rev. E
82
,
050801
(
2010
).
33.
Y. N.
Pandey
,
A.
Brayton
,
C.
Burkhart
,
G. J.
Papakonstantopoulos
, and
M.
Doxastakis
, “
Multiscale modeling of polyisoprene on graphite
,”
J. Chem. Phys.
140
,
054908
(
2014
).
34.
M.
Solar
and
W.
Paul
, “
Dielectric α-relaxation of 1,4-polybutadiene confined between graphite walls
,”
Eur. Phys. J. E
38
,
37
(
2015
).
35.
N.
Patsalidis
,
G.
Papamokos
,
G.
Floudas
, and
V.
Harmandaris
, “
Structure and dynamics of a polybutadiene melt confined between alumina substrates
,”
Macromolecules
56
,
6552
(
2023
).
36.
G.
Wu
,
H.
Tang
,
X.
Ma
,
Z.
Luo
,
W.
Chen
, and
B.
Yu
, “
Investigation of lubrication mechanism of phosphate ionic liquid by ReaxFF molecular dynamics simulations
,”
J. Mol. Liq.
401
,
124715
(
2024
).
37.
C.
Ayestarán Latorre
,
J. E.
Remias
,
J. D.
Moore
,
H. A.
Spikes
,
D.
Dini
, and
J. P.
Ewen
, “
Mechanochemistry of phosphate esters confined between sliding iron surfaces
,”
Commun. Chem.
4
,
178
(
2021
).
38.
D.
Liu
,
H.
Li
,
L.
Huo
,
K.
Wang
,
K.
Sun
,
J.
Wei
, and
F.
Chen
, “
Molecular dynamics simulation of the lubricant conformation changes and energy transfer of the confined thin lubricant film
,”
Chem. Eng. Sci.
270
,
118541
(
2023
).
39.
L.
Dai
,
V.
Sorkin
,
Z. D.
Sha
,
Q. X.
Pei
,
P. S.
Branicio
, and
Y. W.
Zhang
, “
Molecular dynamics simulations on the frictional behavior of a perfluoropolyether film sandwiched between diamond-like-carbon coatings
,”
Langmuir
30
,
1573
(
2014
).
40.
L.
Pan
,
H.
Yu
,
S.
Lu
, and
G.
Lin
, “
Effects of surface nanostructure on boundary lubrication using molecular dynamics
,”
Nanotechnol. Precis. Eng.
4
,
033005
(
2021
).
41.
S.
Zhan
,
H.
Xu
,
H.
Duan
,
L.
Pan
,
D.
Jia
,
J.
Tu
,
L.
Liu
, and
J.
Li
, “
Molecular dynamics simulation of microscopic friction mechanisms of amorphous polyethylene
,”
Soft Matter
15
,
8827
(
2019
).
42.
J. P.
Ewen
,
H.
Gao
,
M. H.
Müser
, and
D.
Dini
, “
Shear heating, flow, and friction of confined molecular fluids at high pressure
,”
Phys. Chem. Chem. Phys.
21
,
5813
(
2019
).
43.
N.
Kobayashi
,
H.
Tani
,
T.
Shimizu
,
S.
Koganezawa
, and
N.
Tagawa
, “
Slider wear on disks lubricated by ultra-thin perfluoropolyether lubricants with different molecular weights
,”
Tribol. Lett.
53
,
43
(
2014
).
44.
P.
Dauber-Osguthorpe
,
V. A.
Roberts
,
D. J.
Osguthorpe
,
J.
Wolff
,
M.
Genest
, and
A.
Hagler
, “
Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase‐trimethoprim, a drug‐receptor system
,”
Proteins
4
,
31
(
1988
).
45.
J. R.
Maple
,
U.
Dinur
, and
A. T.
Hagler
, “
Derivation of force fields for molecular mechanics and dynamics from ab initio energy surfaces
,”
Proc. Natl. Acad. Sci. U. S. A.
85
,
5350
(
1988
).
46.
M. W.
Finnis
and
J. E.
Sinclair
, “
A simple empirical N-body potential for transition metals
,”
Philos. Mag. A
50
,
45
(
1984
).
47.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
48.
A.
Stukowski
, “
Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool
,”
Modell. Simul. Mater. Sci. Eng.
18
,
015012
(
2009
).
49.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD: Visual molecular dynamics
,”
J. Mol. Graph.
14
,
33
(
1996
).
50.
M. S.
Lavine
,
N.
Waheed
, and
G. C.
Rutledge
, “
Molecular dynamics simulation of orientation and crystallization of polyethylene during uniaxial extension
,”
Polymer
44
,
1771
(
2003
).
51.
J. G.
Ethier
,
L. F.
Drummy
,
R. A.
Vaia
, and
L. M.
Hall
, “
Uniaxial deformation and crazing in glassy polymer-grafted nanoparticle ultrathin films
,”
ACS Nano
13
,
12816
(
2019
).
52.
S.
Ntim
and
M.
Sulpizi
, “
Effects of shear flow on the structure and dynamics of ionic liquids in a metallic nanoconfinement
,”
Phys. Chem. Chem. Phys.
23
,
24357
(
2021
).
53.
S.
Echeverri Restrepo
,
M. C. P.
van Eijk
, and
J. P.
Ewen
, “
Behaviour of n-alkanes confined between iron oxide surfaces at high pressure and shear rate: A nonequilibrium molecular dynamics study
,”
Tribol. Int.
137
,
420
(
2019
).
54.
Y.
Qiang
,
W.
Wu
,
J.
Lu
,
B.
Jiang
, and
G.
Ziegmann
, “
Progressive molecular rearrangement and heat generation of amorphous polyethene under sliding friction: Insight from the united-atom molecular dynamics simulations
,”
Langmuir
36
,
11303
(
2020
).
55.
E. A.
Lazar
,
J.
Han
, and
D. J.
Srolovitz
, “
Topological framework for local structure analysis in condensed matter
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
E5769
(
2015
).
56.
S.
Kumar
and
V.
Charitatos
, “
Influence of surface roughness on droplet evaporation and absorption: Insights into experiments from lubrication-theory-based models
,”
Langmuir
38
,
15889
(
2022
).
57.
A.
Boudaghi
and
M.
Foroutan
, “
Investigation of the wettability of chemically heterogeneous smooth and rough surfaces using molecular dynamics simulation
,”
J. Mol. Liq.
348
,
118017
(
2022
).
You do not currently have access to this content.