The flow of a thin film over a rotating disk is crucial in many industrial applications, such as spin coating and jet cooling. Accurate prediction of hydrodynamic features is essential for optimizing these processes. In this study, we examine the vertical downward impingement of a circular Newtonian liquid jet on a horizontally rotating disk, focusing on two distinct regimes based on the rotation level. For a stationary disk and low rotation speed, a continuous hydraulic jump is formed, while increased rotation speed leads to the transformation of the jump into a hump. A composite mean-field thin-film approach is utilized to analyze the flow dynamics in different regions of the domain. The effects of gravity and rotation are considered by developing a model to capture the continuous jump and vortex structure. The influence of rotation on the laminar boundary layer near impingement is found to be negligible. Specific conditions for gravity and rotation are established to differentiate between the jump and hump regimes. The model is validated for both regimes against existing experiment. In the jump regime, the flow transitions from predominantly azimuthal near the disk to predominantly radial toward the free surface, while in the hump regime, the flow maintains an azimuthal character around the hump. The vortex associated with the jump diminishes with increasing rotation speed, indicating the occurrence of a type-0 jump on a rotating disk. For small gravity, the vortex does not form in conjunction with the jump at any rotation level. In the case of small rotation, large gravity, and large disk size, the film exhibits a hydraulic jump near impingement followed by a sharp rise in thickness near the edge of the disk.

1.
Baayoun
,
A.
,
Khayat
,
R. E.
, and
Wang
,
Y.
, “
The transient spread of a circular liquid jet and hydraulic jump formation
,”
J. Fluid Mech.
947
,
A34
(
2022
).
2.
Bohr
,
T.
,
Dimon
,
P.
, and
Putzkaradze
,
V.
, “
Shallow-water approach to the circular hydraulic jump
,”
J. Fluid Mech.
254
,
635
648
(
1993
).
3.
Bohr
,
T.
,
Putkaradze
,
V.
, and
Watanabe
,
S.
, “
Averaging theory for the structure of hydraulic jumps and separation in laminar free-surface flows
,”
Phys. Rev. Lett.
79
,
1038
1041
(
1997
).
4.
Bohr
,
T.
,
Ellegaard
,
C.
,
Hansen
,
A. E.
, and
Haaning
,
A.
, “
Hydraulic jumps, flow separation and wave breaking: An experimental study
,”
Phys. B
228
,
1
10
(
1996
).
5.
Bohr
,
T.
,
Ellegaard
,
C.
,
Hansen
,
A. E.
,
Haaning
,
A.
,
Putzkaradze
,
V.
, and
Watanabe
,
S.
, “
Separation and pattern formation in hydraulic jumps
,”
Phys. A
249
,
111
117
(
1998
).
6.
Bush
,
J. W. M.
and
Aristoff
,
J. M.
, “
The influence of surface tension on the circular hydraulic jump
,”
J. Fluid Mech.
489
,
229
238
(
2003
).
7.
Charwat
,
A.
,
Kelly
,
R.
, and
Gazley
,
C.
, “
The flow and stability of thin liquid films on a rotating disk
,”
J. Fluid Mech.
53
,
227
255
(
1972
).
8.
Duchesne
,
A.
,
Andersen
,
A.
, and
Bohr
,
T.
, “
Surface tension and the origin of the circular hydraulic jump in a thin liquid film
,”
Phys. Rev. Fluids
4
(
8
),
084001
(
2019
).
9.
Duchesne
,
A.
,
Lebon
,
L.
, and
Limat
,
L.
, “
Constant Froude number in a circular hydraulic jump and its implication on the jump radius selection
,”
Europhys. Lett.
107
,
54002
(
2014
).
10.
Dhar
,
M.
,
Das
,
G.
, and
Das
,
P. K.
, “
Planar hydraulic jumps in thin film flow
,”
J. Fluid Mech.
884
,
A11
(
2020
).
11.
Drazin
,
P.
and
Riley
,
N.
,
The Navier–Stokes Equations: A Classification of Flows and Exact Solutions
(
Cambridge University Press
,
2006
).
12.
Dressaire
,
E.
,
Courbin
,
L.
,
Crest
,
J.
, and
Stone
,
H. A.
, “
Inertia dominated thin-film flows over microdecorated surfaces
,”
Phys. Fluids
22
,
073602
(
2010
).
13.
Ellegaard
,
C.
,
Hansen
,
A.
,
Haaning
,
A.
,
Hansen
,
K.
, and
Bohr
,
T.
, “
Experimental results on flow separation and transitions in the circular hydraulic jump
,”
Phys. Scr.
T67
,
105
110
(
1996
).
14.
Espig
,
H.
and
Hoyle
,
R.
, “
Waves in a thin liquid layer on a rotating disk
,”
J. Fluid Mech.
22
(
4
),
671
677
(
1965
).
15.
Fernandez-Feria
,
R.
,
Sanmiguel-Rojas
,
E.
, and
Benilov
,
E. S.
, “
On the origin and structure of a stationary circular hydraulic jump
,”
Phys. Fluids
31
,
072104
(
2019
).
16.
Fogarty
,
L. E.
, “
The laminar boundary layer on a rotating blade
,”
J. Aero. Sci
18
,
247
252
(
1951
).
17.
Higuera
,
F. J.
, “
The hydraulic jump in a viscous laminar flow
,”
J. Fluid Mech.
274
,
69
92
(
1994
).
18.
Ipatova
,
A.
,
Smirnov
,
K.
, and
Mogilevskiy
,
E.
, “
Steady circular hydraulic jump on a rotating disk
,”
J. Fluid Mech.
927
,
A24
(
2021
).
19.
Kate
,
R.
,
Das
,
O.
, and
Chakraborty
,
S.
, “
Hydraulic jumps due to oblique impingement of circular liquid jets on a flat horizontal surface
,”
J. Fluid Mech.
573
,
247
263
(
2007
).
20.
Kato
,
K.
,
Segalini
,
A.
,
Alfredsson
,
P. H.
, and
Lingwood
,
R. J.
, “
Instability and transition in the boundary layer driven by a rotating slender cone
,”
J. Fluid Mech.
915
,
R4
(
2021
).
21.
Kasimov
,
A. R.
, “
A stationary circular hydraulic jump, the limits of its existence and its gasdynamic analogue
,”
J. Fluid Mech.
601
,
189
198
(
2008
).
22.
Khayat
,
R. E.
and
Kim
,
K.
, “
Thin-film flow of a viscoelastic fluid on an axisymmetric substrate of arbitrary shape
,”
J. Fluid Mech.
552
,
37
71
(
2006
).
23.
Kim
,
T. S.
and
Kim
,
M. U.
, “
The flow and hydrodynamic stability of a liquid film on a rotating disc
,”
Fluid Dyn. Res.
41
(
3
),
035504
(
2009
).
24.
Kim
,
D. J.
and
Kim
,
D.
, “
Low-order modelling of three-dimensional surface waves in liquid film flow on a rotating disk
,”
J. Fluid Mech.
985
,
A4
(
2024
).
25.
Kurihara
,
M.
, “
On hydraulic jumps
,” in
Proceedings of the Report of the Research Institute for Fluid Engineering
(
Kyusyu Imperial University
,
1946
), Vol.
3
, pp.
11
13
.
26.
Lawley
,
A.
,
Atomization: The Production of Metal Powders
(
Metal Powder Industries Federation
,
1992
).
27.
Leshev
,
I.
and
Peev
,
G.
, “
Film flow on a horizontal rotating disk
,”
Chem. Eng. Process.
42
(
11
),
925
929
(
2003
).
28.
Matar
,
O. K.
,
Sisoev
,
G. M.
, and
Lawrence
,
C. J.
, “
Evolution scales for wave regimes in liquid film flow over a spinning disk
,”
Phys. Fluids
16
,
1532
1545
(
2004
).
29.
Middleman
,
S.
,
Modeling Axisymmetric Flows: Dynamics of Films, Jets, and Drops
(
Academic Press
,
1995
).
30.
Miyasaka
,
Y.
, “
On the flow of a viscous free boundary jet on a rotating disk
,”
Bull. J. Soc. Mech. Eng.
17
,
1469
1475
(
1974
).
31.
Mogilevskiy
,
E.
and
Smirnov
,
K.
, “
Low-order models for a circular hydraulic jump on a spherical cap
,”
Phys. Fluids
35
(
1
),
012106
(
2023
).
32.
Ozar
,
B.
,
Cetegen
,
B. M.
, and
Faghri
,
A.
, “
Experiments on the flow of a thin liquid film over a horizontal stationary and rotating disk surface
,”
Exp. Fluids
34
,
556
565
(
2003
).
33.
Prince
,
J. F.
,
Maynes
,
D.
, and
Crockett
,
J.
, “
Analysis of laminar jet impingement and hydraulic jump on a horizontal surface with slip
,”
Phys. Fluids
24
,
102103
(
2012
).
34.
Prince
,
J. F.
,
Maynes
,
D.
, and
Crockett
,
J.
, “
Jet impingement and the hydraulic jump on horizontal surfaces with anisotropic slip
,”
Phys. Fluids
26
,
042104
(
2014
).
35.
Rauscher
,
J.
,
Kelly
,
R.
, and
Cole
,
J.
, “
An asymptotic solution for the laminar flow of a thin film on a rotating disk
,”
J. Appl. Mech.
40
,
43
47
(
1973
).
36.
Roberts
,
A. J.
and
Li
,
Z.
, “
An accurate and comprehensive model of thin fluid flows with inertia on curved substrates
,”
J. Fluid Mech.
553
,
33
73
(
2006
).
37.
Scheichl
,
B.
,
Bowles
,
R. I.
, and
Pasias
,
G.
, “
Developed liquid film passing a trailing edge under the action of gravity and capillarity
,”
J. Fluid Mech.
850
,
924
953
(
2018
).
38.
Scheichl
,
B.
and
Kluwick
,
A.
, “
Laminar spread of a circular liquid jet impinging axially on a rotating disc
,”
J. Fluid Mech.
864
,
449
489
(
2019
).
39.
Schlichting
,
H.
and
Gersten
,
K.
,
Boundary-Layer Theory
, 8th ed. (
Springer
,
2000
).
40.
Sisoev
,
G. M.
,
Matar
,
O. K.
, and
Lawrence
,
C. J.
, “
Axisymmetric wave regimes in viscous liquid film flow over a spinning disk
,”
J. Fluid Mech.
495
,
385
411
(
2003
).
41.
Tani
,
I.
, “
Water jump in the boundary layer
,”
J. Phys. Soc. Jpn.
4
,
212
215
(
1949
).
42.
Tanner
,
W. H.
and
Yaggy
,
P. F.
, “
Experimental boundary layer study on hovering rotors
,”
J. Am. Helicopter Soc.
11
(
3
),
22
37
(
1966
).
43.
Thomas
,
S.
,
Faghri
,
A.
, and
Hankey
,
W.
, “
Experimental analysis and flow visualization of a thin liquid film on a stationary and rotating disk
,”
J. Fluids Eng.
113
,
73
80
(
1991
).
44.
Thomas
,
S.
,
Hankey
,
W.
,
Faghri
,
A.
, and
Swanson
,
T.
, “
One-dimensional analysis of the hydrodynamic and thermal characteristics of thin film flows including hydraulic jump and rotation
,”
J. Heat Transfer
112
,
728
735
(
1990
).
45.
Uma
,
B.
and
Usha
,
R.
, “
A thin conducting liquid film on a spinning disk in the presence of a magnetic field: Dynamics and stability
,”
J. Appl. Mech.
76
,
041002
(
2009
).
46.
Wang
,
Y.
and
Khayat
,
R. E.
, “
Impinging jet flow and hydraulic jump on a rotating disk
,”
J. Fluid Mech.
839
,
525
560
(
2018
).
47.
Wang
,
Y.
and
Khayat
,
R. E.
, “
The role of gravity in the prediction of the circular hydraulic jump radius for high-viscosity liquids
,”
J. Fluid Mech.
862
,
128
161
(
2019
).
48.
Wang
,
Y.
and
Khayat
,
R. E.
, “
The influence of heating on liquid jet spreading and hydraulic jump
,”
J. Fluid Mech.
883
,
A59
(
2020
).
49.
Wang
,
W.
,
Baayoun
,
A.
, and
Khayat
,
R. E.
, “
A coherent composite approach for the continuous circular hydraulic jump and vortex structure
,”
J. Fluid Mech.
966
,
A15
(
2023
).
50.
Wang
,
W.
,
Baayoun
,
A.
, and
Khayat
,
R. E.
, “
The characteristics of the circular hydraulic jump and vortex structure
,”
J. Fluid Mech.
980
,
A15
(
2024
).
51.
Wang
,
D.
,
Jin
,
H.
,
Ling
,
X.
,
Peng
,
H.
,
Yu
,
J.
, and
Cui
,
Z.
, “
Regulation of velocity zoning behaviour and hydraulic jump of impinging jet flow on a spinning disk reactor
,”
Chem. Eng. J.
390
,
124392
(
2020
).
52.
Watanabe
,
S.
,
Putkaradze
,
V.
, and
Bohr
,
T.
, “
Integral methods for shallow free-surface flows with separation
,”
J. Fluid Mech.
480
,
233
265
(
2003
).
53.
Watson
,
E.
, “
The spread of a liquid jet over a horizontal plane
,”
J. Fluid Mech.
20
,
481
499
(
1964
).
You do not currently have access to this content.