The oblique water entry of a hollow cylinder at various entry angles is numerically studied. The formation characteristics of the internal and external cavities, the curling splash, and the underwater rotation of the cylinder are revealed and analyzed. Our results show that asymmetric left- and right-attached cavities form near both the inner and outer walls of the cylinder. There are different formation patterns for the internal cavity between the left and right sides. The left internal cavity is mainly formed by the cavity shrinkage after closure, whereas the right internal cavity is formed by internal flow separation at small water-entry angles. An inclined concavity forms on the through-hole jet tip, induced by the rightward-curling splash. The rotation direction of the cylinder varies with entry angles and a critical angle exists. A periodic hydrodynamic force and moment are observed as the cylinder swings from side to side, resulting in a steady tail-slap motion.

1.
T. T.
Truscott
,
B. P.
Epps
, and
J.
Belden
, “
Water entry of projectiles
,”
Annu. Rev. Fluid Mech.
46
,
355
378
(
2014
).
2.
S.
Xia
,
Y.
Wei
,
C.
Wang
,
W.
Cao
, and
X.
Hu
, “
Numerical investigation of the high-speed vertical water entry of a cylindrical shell
,”
Phys. Fluids
35
(
3
),
035132
(
2023
).
3.
M.
Jalalisendi
and
M.
Porfiri
, “
Water entry of cylindrical shells: Theory and experiments
,”
AIAA J.
56
(
11
),
4500
4514
(
2018
).
4.
R.
Panciroli
,
S.
Ubertini
,
G.
Minak
, and
E.
Jannelli
, “
Experiments on the dynamics of flexible cylindrical shells impacting on a water surface
,”
Exp. Mech.
55
(
8
),
1537
1550
(
2015
).
5.
C. F.
Babbs
, “
Stone skipping physics
,”
Phys. Teach.
57
(
5
),
278
281
(
2019
).
6.
S. I.
Sharker
,
S.
Holekamp
,
M. M.
Mansoor
,
F. E.
Fish
, and
T. T.
Truscott
, “
Water entry impact dynamics of diving birds
,”
Bioinspir. Biomim.
14
(
5
),
056013
(
2019
).
7.
J. W.
Glasheen
and
T. A.
McMahon
, “
A hydrodynamic model of locomotion in the Basilisk Lizard
,”
Nature
380
(
6572
),
340
342
(
1996
).
8.
T.
Guillet
,
M.
Mouchet
,
J.
Belayachi
,
S.
Fay
,
D.
Colturi
,
P.
Lundstam
,
P.
Hosoi
,
C.
Clanet
, and
C.
Cohen
, “
The hydrodynamics of high diving
,” in
73th Annual Meeting APS Division Fluid Dynamics
(
MDPI
,
2020
), Vol.
49
(1), pp.
1
6
.
9.
S.
Feng
,
W.
Mingzhen
,
Z.
Jiaxu
, and
H.
Qi
, “
Numerical simulation method for wave surface landing of seaplane
,”
IOP Conf. Ser: Mater. Sci. Eng.
751
(
1
),
012061
(
2020
).
10.
H.
Zeraatgar
,
J.
Malekmohammadi
,
M. J.
Javaherian
, and
H.
Moradi
, “
Sampling rate effect on wedge pressure record in water entry by experiment
,”
Ocean Eng.
179
,
51
58
(
2019
).
11.
Y.
Shi
,
G.
Wang
, and
G.
Pan
, “
Experimental study on cavity dynamics of projectile water entry with different physical parameters
,”
Phys. Fluids
31
(
6
),
067103
(
2019
).
12.
C.
Wang
,
Q.
Huang
,
L.
Lu
,
G.
Pan
, and
S.
Gao
, “
Numerical investigation of water entry characteristics of a projectile in the wave environment
,”
Ocean Eng.
294
,
116821
(
2024
).
13.
T. T.
Truscott
,
J. T.
Gomez
,
D. N.
Beal
, and
A. H.
Techet
, “
Shallow angle water entry of ballistic projectiles
,” in
7th International Symposium on Cavitation
(
ASME
,
Ann Arbor, Michigan
,
2009
).
14.
T. T.
Truscott
,
B. P.
Epps
, and
A. H.
Techet
, “
Unsteady forces on spheres during free-surface water entry
,”
J. Fluid Mech.
704
,
173
210
(
2012
).
15.
J. M.
Aristoff
,
T. T.
Truscott
,
A. H.
Techet
, and
J. W. M.
Bush
, “
The water entry of decelerating spheres
,”
Phys. Fluids
22
(
3
),
032102
(
2010
).
16.
N.
Kim
and
H.
Park
, “
Water entry of rounded cylindrical bodies with different aspect ratios and surface conditions
,”
J. Fluid Mech.
863
,
757
788
(
2019
).
17.
A. H.
Techet
and
T. T.
Truscott
, “
Water entry of spinning hydrophobic and hydrophilic spheres
,”
J. Fluids Struct.
27
(
5–6
),
716
726
(
2011
).
18.
J. M.
Aristoff
and
J. W. M.
Bush
, “
Water entry of small hydrophobic spheres
,”
J. Fluid Mech.
619
,
45
78
(
2009
).
19.
T. T.
Truscott
and
A. H.
Techet
, “
Water entry of spinning spheres
,”
J. Fluid Mech.
625
,
135
165
(
2009
).
20.
X. J.
Lyu
,
X.
Wang
,
C.
Qi
, and
R. S.
Sun
, “
Characteristics of cavity dynamics, forces, and trajectories on vertical water entries with two spheres side-by-side
,”
Phys. Fluids
35
(
9
),
092101
(
2023
).
21.
X. J.
Lyu
,
H. L.
Yun
, and
Z. Y.
Wei
, “
Influence of time interval on the water entry of two spheres in tandem configuration
,”
Exp. Fluids
62
(
11
),
222
(
2021
).
22.
S.
Gekle
,
I. R.
Peters
,
J. M.
Gordillo
,
D.
van der Meer
, and
D.
Lohse
, “
Supersonic air flow due to solid-liquid impact
,”
Phys. Rev. Lett.
104
(
2
),
024501
(
2010
).
23.
R.
Bergmann
,
D.
van der Meer
,
S.
Gekle
,
A.
van der Bos
, and
D.
Lohse
, “
Controlled impact of a disk on a water surface: Cavity dynamics
,”
J. Fluid Mech.
633
,
381
409
(
2009
).
24.
J.-F.
Louf
,
B.
Chang
,
J.
Eshraghi
,
A.
Mituniewicz
,
P. P.
Vlachos
, and
S.
Jung
, “
Cavity ripple dynamics after pinch-off
,”
J. Fluid Mech.
850
,
611
623
(
2018
).
25.
G. X.
Yan
,
G.
Pan
,
Y.
Shi
, and
G. H.
Wang
, “
Experimental study on water entry of cylindrical projectiles with different nose shapes
,”
Mod. Phys. Lett. B
33
(
9
),
1950107
(
2019
).
26.
T.
Chen
,
W.
Huang
,
W.
Zhang
,
Y. F.
Qi
, and
Z. T.
Guo
, “
Experimental investigation on trajectory stability of high-speed water entry projectiles
,”
Ocean Eng.
175
,
16
24
(
2019
).
27.
L.
Yi
,
S.
Li
,
H. C.
Jiang
,
D.
Lohse
,
C.
Sun
, and
V.
Mathai
, “
Water entry of spheres into a rotating liquid
,”
J. Fluid Mech.
912
,
R1
10
(
2021
).
28.
C.
Qi
,
X.
Lyu
,
X.
Wang
,
H.
Ye
,
H.
Shi
, and
Z.
Wan
, “
Experimental and numerical studies on vertical water entry of a cylinder under the influence of current
,”
Phys. Fluids
36
(
3
),
033322
(
2024
).
29.
X.
Hu
,
Y.
Wei
, and
C.
Wang
, “
Effect of fluid–structure interaction on the oblique water entry of the projectile under the influence of floating ice structure
,”
Phys. Fluids
36
(
4
),
043331
(
2024
).
30.
H.
Wang
,
Z. G.
Huang
,
D.
Huang
,
Y.
Hou
,
Z. H.
Chen
,
Z. Q.
Guo
,
S.
Sun
, and
R. Y. X.
Xue
, “
Influences of floating ice on the vertical water entry process of a trans-media projectile at high speeds
,”
Ocean Eng.
265
,
112548
(
2022
).
31.
W.
Li
,
C.
Wang
,
Y.
Wei
,
S.
Xia
, and
Y.
Ding
, “
Experimental study on vertical water entry of the projectile with canard-wing
,”
Phys. Fluids
36
(
3
),
033356
(
2024
).
32.
Q. Z.
Yang
,
F.
Xu
,
Y.
Yang
,
J. Y.
Wang
,
A. W.
Wang
, and
C. H.
Ma
, “
Numerical study on the dynamic characteristics of water entry of cavity body using two-phase SPH method
,”
Acta Mech. Sin.
37
(
7
),
1072
1089
(
2021
).
33.
H.
Liu
,
J. T.
Pi
,
B.
Zhou
,
L.
Chen
,
Q.
Fu
, and
G. Y.
Zhang
, “
Experimental investigation on the multiphase flow characteristics of oblique water entry of semi-closed cylinder
,”
Ocean Eng.
239
,
109819
(
2021
).
34.
M.-A.
Jafari
and
P.
Akbarzadeh
, “
Experimental analysis of water entry problem considering hollow cylinders: The impact of hole geometry
,”
Ocean Eng.
259
,
111906
(
2022
).
35.
Y.
Hou
,
Z.
Huang
,
Z.
Chen
,
Z.
Guo
, and
Y.
Xu
, “
Experimental investigations on the oblique water entry of hollow cylinders
,”
Ocean Eng.
266
,
112800
(
2022
).
36.
B.
Zhou
,
H.
Liu
,
Y.
Wang
,
Z.
Wu
,
X.
Han
, and
W. M.
Gho
, “
Numerical investigation on the cavity dynamics and multiphase flow field evolution for water entry of vertical cylindrical shell
,”
J. Fluids Struct.
103
,
103268
(
2021
).
37.
X. Y.
Zhang
,
Y.
Shi
,
G.
Pan
, and
Q. G.
Huang
, “
Study on the impact performance of sandwich hollow cylinders hitting water based on SPH method
,”
Ocean Eng.
197
,
106808
(
2020
).
38.
Y.
Hou
,
Z.
Huang
,
Z.
Chen
,
Z.
Guo
, and
Y.
Luo
, “
Investigations on the vertical water-entry of a hollow cylinder with deep-closure pattern
,”
Ocean Eng.
190
,
106426
(
2019
).
39.
H.
Shokri
and
P.
Akbarzadeh
, “
Experimental investigation of water entry of dimpled spheres
,”
Ocean Eng.
250
,
110992
(
2022
).
40.
H.
Sun
and
O. M.
Faltinsen
, “
Water impact of horizontal circular cylinders and cylindrical shells
,”
Appl. Ocean Res.
28
(
5
),
299
311
(
2006
).
41.
X.
Lyu
,
Z.
Wei
,
H.
Tang
,
T. H.
New
, and
H.
Li
, “
On the motion of a falling circular cylinder in flows after water entry
,” in
International Conference on Experimental Mechanics 2014
(
SPIE
,
2015
).
42.
M.-R.
Erfanian
and
M.
Anbarsooz
, “
Numerical investigation of body and hole effects on the cavitating flow behind a disk cavitator at extremely low cavitation numbers
,”
Appl. Math. Modell.
62
,
163
180
(
2018
).
43.
Y.
Hou
,
Z.
Huang
,
Z.
Chen
,
Z.
Guo
, and
L.
Han
, “
Different closure patterns of the hollow cylinder cavities with various water-entry velocities
,”
Ocean Eng.
221
,
108526
(
2021
).
44.
H. W.
Fan
,
Z. G.
Huang
,
H.
Wang
,
Z. H.
Chen
,
X. Y.
Liu
,
F. J.
Xiao
, and
R. X.
Qiu
, “
Numerical study of high-speed vertical water entry of hollow projectiles with different aperture sizes and velocities
,”
J. Appl. Fluid Mech.
16
(
11
),
2219
2234
(
2023
).
45.
G. Y.
Zhang
,
Z.
Hou
,
T. Z.
Sun
,
H. P.
Wei
,
N.
Li
,
B.
Zhou
, and
Y. J.
Gao
, “
Numerical simulation of the effect of waves on cavity dynamics for oblique water entry of a cylinder
,”
J. Hydrodyn.
32
(
6
),
1178
1190
(
2020
).
46.
H.
Liu
,
B.
Zhou
,
J.
Yu
,
K.
Liu
,
X.
Han
, and
G.
Zhang
, “
Experimental investigation on the multiphase flow characteristics of oblique water entry of the hollow cylinders
,”
Ocean Eng.
272
,
113902
(
2023
).
47.
T. H.
Shih
,
W. W.
Liou
,
A.
Shabbir
,
Z.
Yang
, and
J.
Zhu
, “
A new k-ε eddy viscosity model for high Reynolds number turbulent flows
,”
Comput. Fluids
24
(
3
),
227
238
(
1995
).
You do not currently have access to this content.