Microfluidic mixing techniques have gained significant interest for their immense potential in the fields of medical diagnostics, food processing, and biochemical engineering. This study presents a novel Y-micromixer and conducts an analysis of the mixing process between ferrofluid and water based on the electrokinetic and magnetofluidic transport phenomena. By introducing zeta potential patches, the instability is increased, leading to improved mixing. In addition, the strategic placement of neodymium micromagnets in close proximity to the microchannel is found to be highly advantageous. Our work utilizes finite element simulation to investigate the impact of magnet distance and the number of magnets on mixing efficiency in the microchannel. This study also investigates the influence of the magnitude of zeta potential of the patches on the efficiency of mixing. A noteworthy observation is that increasing the number of micromagnets positioned at a certain distance from each other and closer to the microchannel, in combination with the zeta potential patches, resulted in a substantial improvement in the mixing index. The utilization of micromagnets and zeta potential patches to improve mixing without the requirement of an extended channel length will be highly advantageous to the scientific community.

1.
H.
Shi
,
Y.
Zhao
, and
Z.
Liu
, “
Numerical investigation of the secondary flow effect of lateral structure of micromixing channel on laminar flow
,”
Sens. Actuators, B
321
,
128503
(
2020
).
2.
C. P.
Fonte
,
D. F.
Fletcher
,
P.
Guichardon
, and
J.
Aubin
, “
Simulation of micromixing in a T-mixer under laminar flow conditions
,”
Chem. Eng. Sci.
222
,
115706
(
2020
).
3.
S.
Yuan
,
B.
Jiang
,
T.
Peng
,
Q.
Li
, and
M.
Zhou
, “
An investigation of flow patterns and mixing characteristics in a cross-shaped micromixer within the laminar regime
,”
Micromachines
12
,
462
(
2021
).
4.
S.
Elkoumy
,
E.
Barakat
, and
S. I.
Abdelsalam
, “Hall and transverse magnetic field effects on peristaltic flow of a maxwell fluid through a porous medium,” in Basic Science Engineering (published online 2013).
5.
R.
Raza
,
R.
Naz
,
S.
Murtaza
, and
S. I.
Abdelsalam
, “
Novel nanostructural features of heat and mass transfer of radiative Carreau nanoliquid above an extendable rotating disk
,”
Int. J. Mod. Phys. B
2450407
(
2024
).
6.
C.-Y.
Wu
and
B.-H.
Lai
, “
Numerical study of T-shaped micromixers with vortex-inducing obstacles in the inlet channels
,”
Micromachines
11
,
1122
(
2020
).
7.
C.-Y.
Lee
and
L.-M.
Fu
, “
Recent advances and applications of micromixers
,”
Sens. Actuators, B
259
,
677
(
2018
).
8.
A.
Cosentino
,
H.
Madadi
,
P.
Vergara
,
R.
Vecchione
,
F.
Causa
, and
P. A.
Netti
, “
An efficient planar accordion-shaped micromixer: From biochemical mixing to biological application
,”
Sci. Rep.
5
,
17876
(
2015
).
9.
A.-S.
Yang
,
F.-C.
Chuang
,
C.-K.
Chen
,
M.-H.
Lee
,
S.-W.
Chen
,
T.-L.
Su
, and
Y.-C.
Yang
, “
A high-performance micromixer using three-dimensional Tesla structures for bio-applications
,”
Chem. Eng. J.
263
,
444
(
2015
).
10.
Y.
Kawai
and
T.
Yamamoto
, “
Synthesis of dimpled and submicron-sized polymer particles of different morphologies using free micromixer
,”
Colloid Interface Sci. Commun.
32
,
100193
(
2019
).
11.
J. S.
Lee
,
P.
Han
,
R.
Chaudhury
,
S.
Khan
,
S.
Bickerton
,
M. D.
McHugh
,
H. B.
Park
,
A. L.
Siefert
,
G.
Rea
,
J. M.
Carballido
et al, “
Metabolic and immunomodulatory control of type 1 diabetes via orally delivered bile-acid-polymer nanocarriers of insulin or rapamycin
,”
Nat. Biomed. Eng.
5
,
983
(
2021
).
12.
M.-E.
Mäeots
,
B.
Lee
,
A.
Nans
,
S.-G.
Jeong
,
M. M.
Esfahani
,
S.
Ding
,
D. J.
Smith
,
C.-S.
Lee
,
S. S.
Lee
,
M.
Peter
et al, “
Modular microfluidics enables kinetic insight from time-resolved cryo-EM
,”
Nat. Commun.
11
,
3465
(
2020
).
13.
X.
Liu
and
Y.
Lu
, “
Highly efficient and flexible preparation of water-dispersed Fe3O4 nanoclusters using a micromixer
,”
Particuology
45
,
42
(
2019
).
14.
X.
Wang
,
Z.
Liu
,
Y.
Cai
,
B.
Wang
, and
X.
Luo
, “
A cost-effective serpentine micromixer utilizing ellipse curve
,”
Anal. Chim. Acta
1155
,
338355
(
2021
).
15.
S.
Rahbarshahlan
,
A.
Ghaffarzadeh Bakhshayesh
,
A.
Rostamzadeh Khosroshahi
, and
M.
Aligholami
, “
Interface study of the fluids in passive micromixers by altering the geometry of inlets
,”
Microsyst. Technol.
27
,
2791
(
2021
).
16.
J. C.
Kurnia
and
A. P.
Sasmito
, “
Performance evaluation of liquid mixing in a T-junction passive micromixer with a twisted tape insert
,”
Ind. Eng. Chem. Res.
59
,
3904
(
2019
).
17.
W.-K.
Tseng
,
J.-L.
Lin
,
W.-C.
Sung
,
S.-H.
Chen
, and
G.-B.
Lee
, “
Active micro-mixers using surface acoustic waves on Y-cut 128° LiNbO3
,”
J. Micromech. Microeng.
16
,
539
(
2006
).
18.
X.
Chen
and
Z.
Wu
, “
Design and numerical simulation of a novel microfluidic electroosmotic micromixer with three electrode pairs
,”
J. Chem. Technol. Biotechnol.
94
,
1991
(
2019
).
19.
M. H.
Oddy
,
J. G.
Santiago
, and
J. C.
Mikkelsen
, “
Electrokinetic instability micromixing
,”
Anal. Chem.
73
,
5822
(
2001
).
20.
G.
Cai
,
L.
Xue
,
H.
Zhang
, and
J.
Lin
, “
A review on micromixers
,”
Micromachines
8
,
274
(
2017
).
21.
S. S.
Bahga
,
O. I.
Vinogradova
, and
M. Z.
Bazant
, “
Anisotropic electro-osmotic flow over super-hydrophobic surfaces
,”
J. Fluid Mech.
644
,
245
(
2010
).
22.
R. J.
Hunter
,
Zeta Potential in Colloid Science: Principles and Applications
, Vol.
2
(
Academic Press
,
2013
).
23.
P.
Majumdar
and
D.
Dasgupta
, “
Electromagnetohydrodynamic (EMHD) flow through porous media—Multiscale approach
,”
J. Appl. Phys.
134
,
224702
(
2023
).
24.
P.
Majumdar
and
D.
Dasgupta
, “Oral: electromagnetohydrodynamic flow and thermal analysis of double stenotic microchannel,” in Bulletin of the American Physical Society (APS, 2024).
25.
R. F.
Probstein
,
Physicochemical Hydrodynamics: An Introduction
(
John Wiley & Sons
,
2005
).
26.
P.
Majumdar
and
D.
Dasgupta
, “Effect of anisotropy on the permeability of electro-osmotic flow through porous media: Multiscale approach,”
Transp. Porous Media
151
(
3
),
599
624
(
2024
).
27.
P.
Majumdar
and
D.
Dasgupta
, “Multiscale modeling of electromagnetohydrodynamic flow through porous media,” in
Bulletin of the American Physical Society
(
APS
,
2023
).
28.
L.
Song
,
L.
Yu
,
Y.
Zhou
,
A. R.
Antao
,
R. A.
Prabhakaran
, and
X.
Xuan
, “
Electrokinetic instability in microchannel ferrofluid/water co-flows
,”
Sci. Rep.
7
,
46510
(
2017
).
29.
J.
Park
,
S.
Shin
,
K. Y.
Huh
, and
I.
Kang
, “
Application of electrokinetic instability for enhanced mixing in various micro–T-channel geometries
,”
Phys. Fluids
17
,
118101
(
2005
).
30.
I.
Medina
,
M.
Toledo
,
F.
Méndez
, and
O.
Bautista
, “
Pulsatile electroosmotic flow in a microchannel with asymmetric wall zeta potentials and its effect on mass transport enhancement and mixing
,”
Chem. Eng. Sci.
184
,
259
(
2018
).
31.
D.
Erickson
and
D.
Li
, “
Influence of surface heterogeneity on electrokinetically driven microfluidic mixing
,”
Langmuir
18
,
1883
1892
(
2002
).
32.
G.
Tang
,
Y.
He
, and
W.
Tao
, “
Numerical analysis of mixing enhancement for micro-electroosmotic flow
,”
J. Appl. Phys.
107
,
104906
(
2010
).
33.
W.-J.
Luo
, “
Transient electroosmotic flow induced by AC electric field in micro-channel with patchwise surface heterogeneities
,”
J. Colloid Interface Sci.
295
,
551
(
2006
).
34.
J.-L.
Lin
,
K.-H.
Lee
, and
G.-B.
Lee
, “
Active mixing inside microchannels utilizing dynamic variation of gradient zeta potentials
,”
Electrophoresis
26
,
4605
4615
(
2005
).
35.
S. H.
Lee
,
D.
Van Noort
,
J. Y.
Lee
,
B.-T.
Zhang
, and
T. H.
Park
, “
Effective mixing in a microfluidic chip using magnetic particles
,”
Lab Chip
9
,
479
(
2009
).
36.
C.-Y.
Wen
,
C.-P.
Yeh
,
C.-H.
Tsai
, and
L.-M.
Fu
, “
Rapid magnetic microfluidic mixer utilizing AC electromagnetic field
,”
Electrophoresis
30
,
4179
(
2009
).
37.
G.-P.
Zhu
and
N.-T.
Nguyen
, “
Rapid magnetofluidic mixing in a uniform magnetic field
,”
Lab Chip
12
,
4772
(
2012
).
38.
M.
Hejazian
and
N.-T.
Nguyen
, “
A rapid magnetofluidic micromixer using diluted ferrofluid
,”
Micromachines
8
,
37
(
2017
).
39.
F.
Wittbracht
,
A.
Weddemann
,
B.
Eickenberg
,
M.
Zahn
, and
A.
Hütten
, “
Enhanced fluid mixing and separation of magnetic bead agglomerates based on dipolar interaction in rotating magnetic fields
,”
Appl. Phys. Lett.
100
,
123507
(
2012
).
40.
S. I.
Abdelsalam
,
A.
Magesh
,
P.
Tamizharasi
, and
A.
Zaher
, “
Versatile response of a Sutterby nanofluid under activation energy: Hyperthermia therapy
,”
Int. J. Numer. Methods Heat Fluid Flow
34
,
408
(
2024
).
41.
S.
Abdelsalam
and
A.
Zaher
, “
Biomimetic amelioration of zirconium nanoparticles on a rigid substrate over viscous slime—A physiological approach
,”
Appl. Math. Mech.
44
,
1563
(
2023
).
42.
D.
Nouri
,
A.
Zabihi-Hesari
, and
M.
Passandideh-Fard
, “
Rapid mixing in micromixers using magnetic field
,”
Sens. Actuators, A
255
,
79
(
2017
).
43.
Y.
Chen
,
X.
Fan
, and
C. N.
Kim
, “
A new electromagnetic micromixer for the mixing of two electrolyte solutions
,”
J. Mech. Sci. Technol.
33
,
5989
(
2019
).
44.
R.
Zhou
,
A. N.
Surendran
,
M.
Mejulu
, and
Y.
Lin
, “
Rapid microfluidic mixer based on ferrofluid and integrated microscale NdFeB-PDMS magnet
,”
Micromachines
11
,
29
(
2019
).
45.
N.
Kim
,
W. X.
Chan
,
S. H.
Ng
,
Y.-J.
Yoon
, and
J. B.
Allen
, “
Understanding interdependencies between mechanical velocity and electrical voltage in electromagnetic micromixers
,”
Micromachines
11
,
636
(
2020
).
46.
R.
Zhou
and
A. N.
Surendran
, “Study on micromagnets induced local wavy mixing in a microfluidic channel,”
Appl. Phys. Lett.
117
,
132408
(
2020
).
47.
M.
Bayareh
,
M. N.
Ashani
, and
A.
Usefian
, “
Active and passive micromixers: A comprehensive review
,”
Chem. Eng. Process.
147
,
107771
(
2020
).
48.
M. A.
Maleki
,
M.
Soltani
,
N.
Kashaninejad
, and
N.-T.
Nguyen
, “Effects of magnetic nanoparticles on mixing in droplet-based microfluidics,”
Phys. Fluids
31
,
032001
(
2019
).
49.
D. C.
Tretheway
and
C. D.
Meinhart
, “
Apparent fluid slip at hydrophobic microchannel walls
,”
Phys. Fluids
14
,
L9
(
2002
).
50.
C.-H.
Choi
,
U.
Ulmanella
,
J.
Kim
,
C.-M.
Ho
, and
C.-J.
Kim
, “Effective slip and friction reduction in nanograted superhydrophobic microchannels,”
Phys. Fluids
18
,
087105
(
2006
).
51.
A.
Peethan
,
M.
Aravind
, and
S. D.
George
,
Advances in Superhydrophobic Coatings
(
Royal Society of Chemistry
,
2023
).
You do not currently have access to this content.