This article investigates the traveling wave solution for a geophysical Boussinesq-type equation that models equatorial tsunami waves. The discussed structure exhibits explicit traveling wave solutions characterized by speeds surpassing the linear propagation speed and small amplitude wave near-field variables. A combination of traveling wave transformation, tanh method, extended tanh method, and a modified form of extended tanh method are implemented, leading to some new traveling wave solutions for the referred nonlinear model. Through the appropriate selection of parameters, the research employs two-dimensional, three-dimensional, and contour plots to showcase the characteristics of specific solutions. The presented visual representation serves as an efficient means to understand the nature of these solutions. This research further extends its investigation by transforming the considered equation into a planar dynamical structure. Through this transformation, all potential phase portraits of the dynamical system are thoroughly examined, utilizing the theory of bifurcation. In addition, this work investigates the modulation of instability in the governing equation using the linear stability analysis function. Importantly, all the newly derived solutions conform to the main equation when substituted into it. The obtained results demonstrate the effectiveness, conciseness, and efficiency of the applied techniques. These strategies have the potential to be useful in scrutinizing more complex models that appear in modern science and engineering.

1.
R.
Chen
,
Q.
Li
,
X.
Yu
,
L.
Chen
, and
H.
Li
, “
Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces
,”
Chem. Rev.
120
(
14
),
6820
6877
(
2020
).
2.
M. A. E.
Abdelrahman
and
H. A.
Alkhidhr
, “
A robust and accurate solver for some nonlinear partial differential equations and tow applications
,”
Phys. Scr.
95
(
6
),
065212
(
2020
).
3.
Á. G.
López
, “
Stability analysis of the uniform motion of electrodynamic bodies
,”
Phys. Scr.
96
(
1
),
015506
(
2021
).
4.
P. K.
Ratha
,
S. R.
Mishra
, and
R. S.
Tripathy
, “
Exploration of dissipative heat energy in conjunction with various thermophysical properties of nanofluids: Water and ethylene glycol base fluids
,”
Int. Commun. Heat Mass Transfer
138
,
106423
(
2022
).
5.
M.
Sahoo
and
S.
Chakraverty
, “
Sawi transform based homotopy perturbation method for solving shallow water wave equations in fuzzy environment
,”
Mathematics
10
(
16
),
2900
(
2022
).
6.
D.
Mohapatra
,
S.
Chakraverty
, and
M.
Alshammari
, “
Time fractional heat equation of n + 1-dimension in type-1 and type-2 fuzzy environment
,”
Int. J. Fuzzy Syst.
26
,
1
16
(
2023
).
7.
A. K.
Sahoo
and
S.
Chakraverty
, “
Modeling of Mexican hat wavelet neural network with l-BFGS algorithm for simulating the recycling procedure of waste plastic in ocean
,”
J. Eng. Manage. Syst. Eng.
2
(
1
),
61
75
(
2023
).
8.
S.
Kumar
,
I.
Hamid
, and
M. A.
Abdou
, “
Specific wave profiles and closed-form soliton solutions for generalized nonlinear wave equation in (3 + 1)-dimensions with gas bubbles in hydrodynamics and fluids
,”
J. Ocean Eng. Sci.
8
(
1
),
91
102
(
2023
).
9.
P.
Rao
,
D.
Roy
, and
S.
Chakraverty
, “
Vibration analysis of single-link flexible manipulator in an uncertain environment
,”
J. Vib. Eng. Technol.
12
,
2677
(
2024
).
10.
M.
Sahoo
and
S.
Chakraverty
, “
Solitary wave solution for time-fractional SMCH equation in fuzzy environment
,” in
Computation and Modeling for Fractional Order Systems
(
Elsevier
,
2024
), pp.
227
239
.
11.
A.-M.
Wazwaz
, “
The tanh method for traveling wave solutions of nonlinear equations
,”
Appl. Math. Comput.
154
(
3
),
713
723
(
2004
).
12.
A.-M.
Wazwaz
, “
The extended tanh method for new solitons solutions for many forms of the fifth-order KdV equations
,”
Appl. Math. Comput.
184
(
2
),
1002
1014
(
2007
).
13.
Ö. F.
Gözükızıl
and
Ş.
Akçağıl
, “
The tanh-coth method for some nonlinear pseudo-parabolic equations with exact solutions
,”
Adv. Differ. Equations
2013
(
1
),
143
.
14.
L.
M. B. Alam
,
X.
Jiang
, and
A.-A.
Mamun
, “
Exact and explicit traveling wave solution to the time-fractional phi-four and (2 + 1) dimensional CBS equations using the modified extended tanh-function method in mathematical physics
,”
Partial Differ. Equations Appl. Math.
4
,
100039
(
2021
).
15.
U.
Sadiya
,
M.
Inc
,
M. A.
Arefin
, and
M. H.
Uddin
, “
Consistent travelling waves solutions to the non-linear time fractional Klein–Gordon and Sine-Gordon equations through extended tanh-function approach
,”
J. Taibah Univ. Sci.
16
(
1
),
594
607
(
2022
).
16.
A.-A.
Mamun
,
S. N.
Ananna
,
T.
An
,
M.
Asaduzzaman
, and
M. M.
Miah
, “
Solitary wave structures of a family of 3D fractional WBBM equation via the tanh–coth approach
,”
Partial Differ. Equations Appl. Math.
5
,
100237
(
2022
).
17.
S.
Naowarat
,
S.
Saifullah
,
S.
Ahmad
, and
M.
De la Sen
, “
Periodic, singular and dark solitons of a generalized geophysical KdV equation by using the tanh-coth method
,”
Symmetry
15
(
1
),
135
(
2023
).
18.
B.
Gasmi
,
A. A.
Moussa
,
Y.
Mati
,
L. A.
Alhakim
, and
A.
Akgül
, “
New exact traveling wave solutions to the Kawahara equation using the tanh (ξ) expansion method
,”
Int. J. Appl. Comput. Math.
9
(
5
),
98
(
2023
).
19.
S.
Ali
,
A.
Ullah
,
S. F.
Aldosary
,
S.
Ahmad
, and
S.
Ahmad
, “
Construction of optical solitary wave solutions and their propagation for Kuralay system using tanh-coth and energy balance method
,”
Results Phys.
59
,
107556
(
2024
).
20.
A.
Anber
,
I.
Jebril
,
Z.
Dahmani
,
N.
Bedjaoui
, and
A.
Lamamri
, “
The tanh method and the (G′/G)-expansion method for solving the space-time conformable FZK And FZZ evolution equations
,”
Int. J. Innovative Comput., Inf. Control
20
(
2
),
557
573
(
2024
).
21.
J.
Abbas Haider
,
A. M. S.
Alhuthali
, and
M.
Abdelghany Elkotb
, “
Exploring novel applications of stochastic differential equations: Unraveling dynamics in plasma physics with the Tanh-Coth method
,”
Results Phys.
60
,
107684
(
2024
).
22.
S.
Ahmad
,
H. S.
Gafel
,
A.
Khan
,
M. A.
Khan
, and
M.
ur Rahman
, “
Optical soliton solutions for the parabolic nonlinear Schrödinger Hirota's equation incorporating spatiotemporal dispersion via the tanh method linked with the Riccati equation
,”
Opt. Quantum Electron.
56
(
3
),
382
(
2024
).
23.
W.
Li
,
J.
Hu
,
M. U.
Rahman
, and
N. U.
Haq
, “
Complex behavior and soliton solutions of the Resonance Nonlinear Schrödinger equation with modified extended tanh expansion method and Galilean transformation
,”
Results Phys.
56
,
107285
(
2024
).
24.
M. F.
Shehab
,
M. M. A.
El-Sheikh
,
H. M.
Ahmed
,
A. A.
El-Gaber
, and
S.
Alkhatib
, “
Effects of Wiener process on analytical wave solutions for (3 + 1) dimensional nonlinear Schrödinger equation using modified extended mapping method
,”
Results Phys.
56
,
107297
(
2024
).
25.
H. H.
Hussein
,
H. M.
Ahmed
, and
W.
Alexan
, “
Analytical soliton solutions for cubic-quartic perturbations of the Lakshmanan-Porsezian-Daniel equation using the modified extended tanh function method
,”
Ain Shams Eng. J.
15
(
3
),
102513
(
2024
).
26.
K. K.
Ahmed
et al, “
Investigation of solitons in magneto-optic waveguides with Kudryashov's law nonlinear refractive index for coupled system of generalized nonlinear Schrödinger's equations using modified extended mapping method
,”
Nonlinear Anal.
29
(
2
),
205
223
(
2024
).
27.
P.
Yadav
and
R. K.
Gupta
, “
Optical soliton solutions of (1 + 1) dimensional fractional perturbed Chen–Lee–Liu nonlinear equation using modified tanh-expansion method with new Riccati solutions
,”
AIP Conf. Proc.
3081
,
070005
(
2024
).
28.
M. J.
Boussinesq
, “
Théorie de l'intumescence liquide appelée onde solitaire ou de translation se propageant dans un canal rectangulaire
,”
C. R. Acad. Sci. Paris
72
,
755
759
(
1871
).
29.
R.
Hirota
, “
Exact N-soliton solutions of the wave equation of long waves in shallow-water and in nonlinear lattices
,”
J. Math. Phys.
14
(
7
),
810
814
(
1973
).
30.
P.
Daripa
and
R. K.
Dash
, “
Weakly non-local solitary wave solutions of a singularly perturbed Boussinesq equation
,”
Math. Comput. Simul.
55
(
4–6
),
393
405
(
2001
).
31.
Y.
Zhang
and
D.-Y.
Chen
, “
A modified Bäcklund transformation and multi-soliton solution for the Boussinesq equation
,”
Chaos, Solitons Fractals
23
(
1
),
175
181
(
2005
).
32.
A.-M.
Wazwaz
, “
Multiple-soliton solutions for the Boussinesq equation
,”
Appl. Math. Comput.
192
(
2
),
479
486
(
2007
).
33.
Y.
Wang
,
C.
Mu
, and
Y.
Wu
, “
Decay and scattering of solutions for a generalized Boussinesq equation
,”
J. Differ. Equations
247
(
8
),
2380
2394
(
2009
).
34.
T.
Chor
,
N. L.
Dias
, and
A. R.
de Zárate
, “
An exact series and improved numerical and approximate solutions for the Boussinesq equation
,”
Water Resour. Res.
49
(
11
),
7380
7387
, https://doi.org/10.1002/wrcr.20543 (
2013
).
35.
T. A.
Sulaiman
,
H.
Bulut
,
A.
Yokus
, and
H. M.
Baskonus
, “
On the exact and numerical solutions to the coupled Boussinesq equation arising in ocean engineering
,”
Indian J. Phys.
93
(
5
),
647
656
(
2019
).
36.
M.
Ozisik
,
A.
Secer
,
M.
Bayram
,
A.
Yusuf
, and
T. A.
Sulaiman
, “
Soliton solutions of the Boussinesq equation via an efficient analytical technique
,”
Mod. Phys. Lett. B
36
(
28n29
),
2250149
(
2022
).
37.
K.-J.
Wang
,
J.-H.
Liu
,
J.
Si
,
F.
Shi
, and
G.-D.
Wang
, “
N-soliton, breather, lump solutions and diverse traveling wave solutions of the fractional (2 + 1)-dimensional Boussinesq equation
,”
Fractals
31
(
3
),
2350023
(
2023
).
38.
M.
Jafari
,
S.
Mahdion
,
A.
Akgül
, and
S. M.
Eldin
, “
New conservation laws of the Boussinesq and generalized Kadomtsev–Petviashvili equations via homotopy operator
,”
Results Phys.
47
,
106369
(
2023
).
39.
S.
Beji
and
K.
Nadaoka
, “
A formal derivation and numerical modelling of the improved Boussinesq equations for varying depth
,”
Ocean Eng.
23
(
8
),
691
704
(
1996
).
40.
Y. S.
Li
,
S.-X.
Liu
,
Y.-X.
Yu
, and
G.-Z.
Lai
, “
Numerical modeling of Boussinesq equations by finite element method
,”
Coastal Eng.
37
(
2
),
97
122
(
1999
).
41.
S.-B.
Woo
and
P. L.-F.
Liu
, “
Finite-element model for modified Boussinesq equations. I: Model development
,”
J. Waterw., Port, Coastal Ocean Eng
130
(
1
),
1
16
(
2004
).
42.
M.
Dehghan
and
F.
Shakeri
, “
Use of he's homotopy perturbation method for solving a partial differential equation arising in modeling of flow in porous media
,”
J. Porous Media
11
(
8
),
765
778
(
2008
).
43.
D. C.
Antonopoulos
,
V. A.
Dougalis
, and
D. E.
Mitsotakis
, “
Numerical solution of Boussinesq systems of the Bona–Smith family
,”
Appl. Numer. Math.
60
(
4
),
314
336
(
2010
).
44.
Y.
Ucar
,
B.
Karaagac
, and
A.
Esen
, “
A new approach on numerical solutions of the Improved Boussinesq type equation using quadratic B-spline Galerkin finite element method
,”
Appl. Math. Comput.
270
,
148
155
(
2015
).
45.
H.
Zhang
,
X.
Jiang
,
M.
Zhao
, and
R.
Zheng
, “
Spectral method for solving the time fractional Boussinesq equation
,”
Appl. Math. Lett.
85
,
164
170
(
2018
).
46.
T.
Zhang
,
Z.-H.
Lin
,
G.-Y.
Huang
,
C.-M.
Fan
, and
P.-W.
Li
, “
Solving Boussinesq equations with a meshless finite difference method
,”
Ocean Eng.
198
,
106957
(
2020
).
47.
V.
Vucheva
,
V. M.
Vassilev
, and
N.
Kolkovska
, “
Numerical solutions of the Boussinesq equation with nonlinear restoring force
,” in International Conference on Numerical Methods and Applications (Springer Nature, Cham, 2022), pp. 327–338.
48.
Z.
Luo
,
X.
Liu
,
Y.
Zeng
, and
Y.
Li
, “
Existence and uniqueness of generalized and mixed finite element solutions for steady Boussinesq equation
,”
Mathematics
11
(
3
),
545
(
2023
).
49.
A.
Jhangeer
,
H.
Almusawa
, and
Z.
Hussain
, “
Bifurcation study and pattern formation analysis of a nonlinear dynamical system for chaotic behavior in traveling wave solution
,”
Results Phys.
37
,
105492
(
2022
).
50.
N. C. T.
Mezamo
,
V. B.
Nana
,
F. W.
Tchuimmo
, and
L.
Nana
, “
Stabilization of traveling waves on dissipative system near subcritical bifurcation through a combination of global and local feedback
,”
Eur. Phys. J. Plus
137
(
10
),
1139
(
2022
).
51.
B.
Kopçasız
and
E.
Yaşar
, “
Novel exact solutions and bifurcation analysis to dual-mode nonlinear Schrödinger equation
,”
J. Ocean Eng. Sci.
(published online) (
2022
).
52.
S. M. R.
Islam
and
U. S.
Basak
, “
On traveling wave solutions with bifurcation analysis for the nonlinear potential Kadomtsev-Petviashvili and Calogero–Degasperis equations
,”
Partial Differ. Equations Appl. Math.
8
,
100561
(
2023
).
53.
N.
Zhu
and
W.
Qu
, “
Existence and bifurcation of traveling wave solutions to a generalized Boussinesq equation with nonlinear dispersion
,”
Math. Methods Appl. Sci.
47
(
6
),
4840
4852
(
2024
).
54.
N.
Raza
,
S. S.
Kazmi
, and
G. A.
Basendwah
, “
Dynamical analysis of solitonic, quasi-periodic, bifurcation and chaotic patterns of Landau-Ginzburg-Higgs model
,”
J. Appl. Anal. Comput.
14
(
1
),
197
213
(
2024
).
55.
W.
Malfliet
and
W.
Hereman
, “
The tanh method: I. Exact solutions of nonlinear evolution and wave equations
,”
Phys. Scr.
54
(
6
),
563
568
(
1996
).
56.
S. A.
El-Wakil
and
M. A.
Abdou
, “
Modified extended tanh-function method for solving nonlinear partial differential equations
,”
Chaos, Solitons Fractals
31
(
5
),
1256
1264
(
2007
).
57.
A.
Geyer
and
R.
Quirchmayr
, “
Shallow water equations for equatorial tsunami waves
,”
Philos. Trans. R. Soc., A
376
(
2111
),
20170100
(
2018
).
58.
E. J.
Parkes
and
B. R.
Duffy
, “
An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations
,”
Comput. Phys. Commun.
98
(
3
),
288
300
(
1996
).
59.
A. R.
Seadawy
,
M.
Arshad
, and
D.
Lu
, “
Stability analysis of new exact traveling-wave solutions of new coupled KdV and new coupled Zakharov-Kuznetsov systems
,”
Eur. Phys. J. Plus
132
(
4
),
162
(
2017
).
60.
M.
Inc
,
A.
Yusuf
,
A.
Isa Aliyu
, and
M. S.
Hashemi
, “
Soliton solutions, stability analysis and conservation laws for the Brusselator reaction diffusion model with time- and constant-dependent coefficients
,”
Eur. Phys. J. Plus
133
(
5
),
168
(
2018
).
You do not currently have access to this content.