The characteristics of karst reservoirs are extremely varied and anisotropic, exhibiting notable differences in porosity, permeability, and corresponding fluid flow pathways. Fractured karst petroleum reservoirs, such as distinct caverns and fractures, are an example of a typical discrete media type. The traditional reservoir modeling approach and discrete fracture-like local refinement models are unsuitable for field application of fractured karst oil reservoirs due to the needs of high fidelity geological description and huge computing efforts. Based directly on the spatial characteristics of seismic surveys, a numerical simulation model in three dimensions, akin to a node-like network, is presented here for cracked karst oil reserves. First, the watershed image processing technique and the automatic connection identification procedure are used to extract the three-dimensional node-network model. After that, automatic differentiation is used to build the numerical finite volume scheme, and the proper gradient-based adjoint approach is used to conduct the related historical matching rapidly. After validation by a synthetic model in a commercial simulator, this proposed three-dimensional network numerical model is used for a field reservoir block of deep formation in the Tarim basin to demonstrate its computational efficiency and viability for enormously comparable karst oil reservoirs.

1.
Alazmi
,
B.
and
Vafai
,
K.
, “
Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer
,”
Int. J. Heat Mass Transfer
44
(
9
),
1735
1749
(
2001
).
2.
Amaziane
,
B.
,
Bourgeat
,
A.
, and
Koebbe
,
J.
, “
Numerical simulation and homogenization of two-phase flow in heterogeneous porous media
,”
Transp. Porous Media
6
,
519
547
(
1991
).
3.
Bauer
,
M.
and
Tóth
,
T. M.
, “
Characterization and DFN modelling of the fracture network in a Mesozoic karst reservoir: Gomba oilfield, Paleogene Basin, Central Hungary
,”
J. Pet. Geol.
40
(
3
),
319
334
(
2017
).
4.
Dong
,
H.
and
Blunt
,
M. J.
, “
Pore-network extraction from micro-computerized-tomography images
,”
Phys. Rev. E
80
(
3
),
036307
(
2009
).
5.
Emerick
,
A. A.
and
Reynolds
,
A. C.
, “
History matching a field case using the ensemble Kalman filter with covariance localization
,”
SPE Reservoir Eval. Eng.
14
(
04
),
443
452
(
2011
).
6.
Gibson
,
R. L.
, Jr.
and
Tzimeas
,
C.
, “
Quantitative measures of image resolution for seismic survey design
,”
Geophysics
67
(
6
),
1844
1852
(
2002
).
7.
Golfier
,
F.
,
Lasseux
,
D.
, and
Quintard
,
M.
, “
Investigation of the effective permeability of vuggy or fractured porous media from a Darcy-Brinkman approach
,”
Comput. Geosci.
19
(
1
),
63
78
(
2015
).
8.
Gostick
,
J. T.
, “
Versatile and efficient pore network extraction method using marker-based watershed segmentation
,”
Phys. Rev. E
96
(
2
),
023307
(
2017
).
9.
Guo
,
W.
,
Huang
,
Z.
,
Li
,
A.
,
An
,
G.
, and
Cui
,
S.
, “
Visual experiments of bottom water and multi-well water and gas injection flooding for fault-controlled fractured-vuggy reservoirs
,”
Phys. Fluids
35
(
8
),
083319
(
2023
).
10.
Huang
,
Z.
,
Yao
,
J.
,
Li
,
Y.
,
Wang
,
C.
, and
Lv
,
X.
, “
Numerical calculation of equivalent permeability tensor for fractured vuggy porous media based on homogenization theory
,”
Commun. Comput. Phys.
9
(
1
),
180
204
(
2011
).
11.
Karimi-Fard
,
M.
,
Durlofsky
,
L. J.
, and
Aziz
,
K.
, “
An efficient discrete-fracture model applicable for general-purpose reservoir simulators
,”
SPE J.
9
(
02
),
227
236
(
2004
).
12.
Kerans
,
C.
, “
Karst-controlled reservoir heterogeneity in Ellenburger Group carbonates of West Texas
,”
AAPG Bull.
72
(
10
),
1160
1183
(
1988
).
13.
Kiaerr
,
A.
,
Lødøen
,
O. P.
,
De Bruin
,
W.
,
Barros
,
E.
, and
Leeuwenburgh
,
O.
,
Evaluation of a Data-Driven Flow Network Model (FlowNet) for Reservoir Prediction and Optimization
(
European Association of Geoscientists & Engineers
,
2020
), Vol.
2020
, pp.
1
18
.
14.
Kraaijevanger
,
J. F. B. M.
,
Egberts
,
P. J. P.
,
Valstar
,
J. R.
, and
Buurman
,
H. W.
, “
Optimal waterflood design using the adjoint method
,” Paper No. SPE-105764-MS (
2007
).
15.
Li
,
R.
,
Reynolds
,
A. C.
, and
Oliver
,
D. S.
, “
History matching of three-phase flow production data
,”
SPE J.
8
(
04
),
328
340
(
2003
).
16.
Li
,
Y.
,
Jin
,
Q.
,
Zhong
,
J.
, and
Zou
,
S.
, “
Karst zonings and fracture-cave structure characteristics of Ordovician reservoirs in Tahe oilfield, Tarim Basin
,”
Acta Pet. Sin.
37
(
3
),
289
(
2016
).
17.
Lie
,
K. A.
and
Krogstad
,
S.
, “
Comparison of two different types of reduced graph-based reservoir models: Interwell networks (GPSNet) versus aggregated coarse-grid networks (CGNet)
,”
Geoenergy Sci. Eng.
221
,
111266
(
2023
).
18.
Lie
,
K. A.
,
An Introduction to Reservoir Simulation Using MATLAB/GNU Octave: User Guide for the MATLAB Reservoir Simulation Toolbox (MRST)
(
Cambridge University Press
,
2019
).
19.
Liu
,
L.
,
Huang
,
Z.
,
Yao
,
J.
,
Di
,
Y.
, and
Wu
,
Y. S.
, “
An efficient hybrid model for 3D complex fractured vuggy reservoir simulation
,”
SPE J.
25
(
02
),
907
924
(
2020
).
20.
Maschio
,
C.
,
Vidal
,
A. C.
, and
Schiozer
,
D. J.
, “
A framework to integrate history matching and geostatistical modeling using genetic algorithm and direct search methods
,”
J. Pet. Sci. Eng.
63
(
1–4
),
34
42
(
2008
).
21.
Mohamed
,
L.
,
Christie
,
M.
, and
Demyanov
,
V.
, “
History matching and uncertainty quantification: Multiobjective particle swarm optimisation approach
,” Paper No. SPE-143067-MS (
2011
).
22.
Panfilov
,
M.
, “
Homogenized model with memory for two-phase compressible flow in double-porosity media
,”
Phys. Fluids
31
(
9
),
093105
(
2019
).
23.
Popov
,
P.
,
Efendiev
,
Y.
, and
Qin
,
G.
, “
Multiscale modeling and simulations of flows in naturally fractured karst reservoirs
,”
Commun. Comput. Phys.
6
(
1
),
162
184
(
2009
).
24.
Rabbani
,
A.
,
Jamshidi
,
S.
, and
Salehi
,
S.
, “
An automated simple algorithm for realistic pore network extraction from micro-tomography images
,”
J. Pet. Sci. Eng.
123
,
164
171
(
2014
).
25.
Rao
,
X.
,
Zhao
,
H.
, and
Liu
,
Y.
, “
A meshless numerical modeling method for fractured reservoirs based on extended finite volume method
,”
SPE J.
27
(
06
),
3525
3564
(
2022
).
26.
Rao
,
X.
,
Zhao
,
H.
, and
Liu
,
Y.
, “
A novel meshless method based on the virtual construction of node control domains for porous flow problems
,”
Eng. Comput.
40
,
171
211
(
2023
).
27.
Rasoulzadeh
,
M.
,
Al Hubail
,
M. M. H.
,
Deng
,
H.
, and
Kuchuk
,
F. J.
, “
Hydrodynamic driven dissolution in porous media with embedded cavities
,”
Phys. Fluids
32
(
7
),
076607
(
2020
).
28.
Ren
,
G.
,
He
,
J.
,
Wang
,
Z.
,
Younis
,
R. M.
, and
Wen
,
X. H.
, “
Implementation of physics-based data-driven models with a commercial simulator
,” Paper No. SPE-193855-MS (
2019
).
29.
Saffman
,
P. G.
, “
On the boundary condition at the surface of a porous medium
,”
Stud. Appl. Math.
50
(
2
),
93
101
(
1971
).
30.
Shen
,
W.
,
Zhao
,
H.
,
Liu
,
W.
,
Xu
,
L.
, and
Liao
,
M.
, “
Identification method of dominant channeling in fractured vuggy carbonate reservoir based on connectivity model
,”
Fault-Block Oil Gas Field
25
(
004
),
459
463
(
2018
).
31.
Sheppard
,
A. P.
,
Sok
,
R. M.
, and
Averdunk
,
H.
, “
Improved pore network extraction methods
,” paper presented at the
International Symposium of the Society of Core Analysts
, Toronto, 21–25 August
2005
.
32.
Stylianopoulos
,
T.
,
Yeckel
,
A.
,
Derby
,
J. J.
,
Luo
,
X. J.
,
Shephard
,
M. S.
,
Sander
,
E. A.
, and
Barocas
,
V. H.
, “
Permeability calculations in three-dimensional isotropic and oriented fiber networks
,”
Phys. Fluids
20
(
12
),
123601
(
2008
).
33.
Su
,
X.
,
Qi
,
N.
,
Li
,
X.
,
Chen
,
S.
, and
He
,
L.
, “
Effect of control domains of fractures and caves on reactive transport in porous media
,”
Phys. Fluids
35
(
10
),
106602
(
2023
).
34.
Wang
,
J.
,
Zhao
,
W.
,
Liu
,
H.
,
Liu
,
F.
,
Dou
,
L.
,
Yang
,
X.
, and
Li
,
B.
, “
Inter-well interferences and their influencing factors during water flooding in fractured-vuggy carbonate reservoirs
,”
Pet. Explor. Dev.
47
(
5
),
1062
1073
(
2020
).
35.
Wu
,
Y. S.
,
Di
,
Y.
,
Kang
,
Z.
, and
Fakcharoenphol
,
P.
, “
A multiple-continuum model for simulating single-phase and multiphase flow in naturally fractured vuggy reservoirs
,”
J. Pet. Sci. Eng.
78
(
1
),
13
22
(
2011
).
36.
Wu
,
Y. S.
,
Qin
,
G.
,
Ewing
,
R. E.
,
Efendiev
,
Y.
,
Kang
,
Z.
, and
Ren
,
Y.
, “
A multiple-continuum approach for modeling multiphase flow in naturally fractured vuggy petroleum reservoirs
,” Paper No. SPE-104173-MS (
2006
).
37.
Yamashita
,
N.
and
Fukushima
,
M.
, “
On the rate of convergence of the Levenberg-Marquardt method
,” in
Topics in Numerical Analysis: With Special Emphasis on Nonlinear Problems
(
Springer Vienna
,
2001
), pp.
239
249
.
38.
Yao
,
J.
,
Huang
,
Z.
,
Li
,
Y
et al, “
Discrete fracture-vug network model for modeling fluid flow in fractured vuggy porous media
,” Paper No. SPE-130287-MS (
2010
).
39.
Yousef
,
A. A.
,
Gentil
,
P.
,
Jensen
,
J. L.
, and
Lake
,
L. W.
, “
A capacitance model to infer interwell connectivity from production-and injection-rate fluctuations
,”
SPE Reservoir Eval. Eng.
9
(
06
),
630
646
(
2006
).
40.
Zhang
,
B.
and
Liu
,
J.
, “
Classification and characteristics of karst reservoirs in China and related theories
,”
Pet. Explor. Dev.
36
(
1
),
12
29
(
2009
).
41.
Zhao
,
H.
,
Li
,
Y.
,
Cui
,
S.
,
Shang
,
G.
,
Reynolds
,
A. C.
,
Guo
,
Z.
, and
Li
,
H. A.
, “
History matching and production optimization of water flooding based on a data-driven interwell numerical simulation model
,”
J. Nat. Gas Sci. Eng.
31
,
48
66
(
2016
).
42.
Zhao
,
H.
,
Xu
,
L.
,
Guo
,
Z.
,
Zhang
,
Q.
,
Liu
,
W.
, and
Kang
,
X.
, “
Flow-path tracking strategy in a data-driven interwell numerical simulation model for waterflooding history matching and performance prediction with infill wells
,”
SPE J.
25
(
02
),
1007
1025
(
2020
).
You do not currently have access to this content.