The energetic protons trapped within the Earth's radiation belt play a crucial role in substantially impacting the behavior of the ring current, which in turn affects the dynamics of energetic particles. Here, we statistically analyze and discuss the global distributions and temporal evolutions of them at energies from 55 keV to 489 keV by using 7-year (2012–2019) observations by radiation belt storm probes ion composition experiment onboard Van Allen Probes. The observations show that low-energy protons (55–148 keV) are distributed at higher L shells (L > 4), which can deeply penetrate during intense storms. The high-energy protons (221–489 keV) are mainly located at L < 4.5 and are comparably stable. Moreover, the core location (i.e., Lc, the L shell with the peak flux) of them is typically energy-dependent and can be displaced due to geomagnetic storms. Detailed analysis reveals that the Lc for low-energy protons is primarily outside the plasmapause location (Lpp), which can rapidly radially move. However, the Lc for high-energy protons is essentially inside Lpp and is harder to move. The Lc for intermediate-energy protons exhibits fluctuations around Lpp, indicating a clear competition between source and loss processes. In addition, alternative mechanisms, such as wave–particle interactions, are primarily responsible for the gradual variation of them after storms. Our study provides the total configuration of the radiation belt energetic protons measured in the Van Allen Probe era, which would be useful for better understanding the variation of trapped particles in the inner magnetosphere.

1.
I. A.
Daglis
,
R. M.
Thorne
,
W.
Baumjohann
, and
S.
Orsini
, “
The terrestrial ring current: Origin, formation, and decay
,”
Rev. Geophys.
37
(
4
),
407
438
, https://doi.org/10.1029/1999RG900009 (
1999
).
2.
M.
Gkioulidou
,
A. Y.
Ukhorskiy
,
D. G.
Mitchell
, and
L. J.
Lanzerotti
, “
Storm time dynamics of ring current protons: Implications for the long-term energy budget in the inner magnetosphere
,”
Geophys. Res. Lett.
43
(
10
),
4736
4744
, https://doi.org/10.1002/2016GL068013 (
2016
).
3.
Y.
Yu
,
M. W.
Liemohn
,
V. K.
Jordanova
,
C.
Lemon
, and
J.
Zhang
, “
Recent advancements and remaining challenges associated with inner magnetosphere cross-energy/population interactions (IMCEPI)
,”
J. Geophys. Res.-Space Phys.
124
(
2
),
886
897
, https://doi.org/10.1029/2018JA026282 (
2019
).
4.
H.
Zhao
,
X.
Li
,
D. N.
Baker
,
J. F.
Fennell
,
J. B.
Blake
,
B. A.
Larsen
,
R. M.
Skoug
,
H. O.
Funsten
,
R. H. W.
Friedel
,
G. D.
Reeves
,
H. E.
Spence
,
D. G.
Mitchell
,
L. J.
Lanzerotti
, and
J. V.
Rodriguez
, “
The evolution of ring current ion energy density and energy content during geomagnetic storms based on Van Allen Probes measurements
,”
J. Geophys. Res.-Space Phys.
120
(
9
),
7493
7511
, https://doi.org/10.1002/2015JA021533 (
2015
).
5.
D. L.
Turner
,
Y.
Shprits
,
M.
Hartinger
, and
V.
Angelopoulos
, “
Explaining sudden losses of outer radiation belt electrons during geomagnetic storms
,”
Nat. Phys.
8
(
3
),
208
212
(
2012
).
6.
D. L.
Turner
,
E. K. J.
Kilpua
,
H.
Hietala
,
S. G.
Claudepierre
,
T. P.
O'Brien
,
J. F.
Fennell
,
J. B.
Blake
,
A. N.
Jaynes
,
S.
Kanekal
,
D. N.
Baker
,
H. E.
Spence
,
J.-F.
Ripoll
, and
G. D.
Reeves
, “
The response of Earth's electron radiation belts to geomagnetic storms: Statistics from the Van Allen Probes era including effects from different storm drivers
,”
J. Geophys. Res. Space Phys.
124
(
2
),
1013
1034
, https://doi.org/10.1029/2018JA026066 (
2019
).
7.
X.
Li
, “
Simulation of the prompt energization and transport of radiation
,”
Geophys. Res. Lett.
20
(
22
),
2423
2426
, https://doi.org/10.1029/93GL02701 (
1993
).
8.
D. N.
Baker
,
P. J.
Erickson
,
J. F.
Fennell
,
J. C.
Foster
,
A. N.
Jaynes
, and
P. T.
Verronen
, “
Space weather effects in the Earth's radiation belts
,”
Space Sci. Rev.
214
(
1
),
17
(
2018
).
9.
R. B.
Sheldon
and
D. C.
Hamilton
, “
Ion transport and loss in the Earth's quiet ring current 1. Data and standard model
,”
J. Geophys. Res.
98
,
13491
13508
, https://doi.org/10.1029/92JA02869 (
1993
).
10.
V. K.
Jordanova
and
Y.
Miyoshi
, “
Relativistic model of ring current and radiation belt ions and electrons: Initial results
,”
Geophys. Res. Lett.
32
,
L14104
, https://doi.org/10.1029/2005GL023020 (
2005
).
11.
X.
Lyu
and
W.
Tu
, “
Modeling the dynamics of energetic protons in Earth's inner magnetosphere
,”
J. Geophys. Res. Space Phys.
127
,
e2021JA030153
, https://doi.org/10.1029/2021JA030153 (
2022
).
12.
D. N.
Baker
,
S. G.
Kanekal
,
V. C.
Hoxie
,
M. G.
Henderson
,
X.
Li
,
H. E.
Spence
,
S. R.
Elkington
,
R. H.
Friedel
,
J.
Goldstein
,
M. K.
Hudson
,
G. D.
Reeves
,
R. M.
Thorne
,
C. A.
Kletzing
, and
S. G.
Claudepierre
, “
A long-lived relativistic electron storage ring embedded in Earth's outer Van Allen belt
,”
Science
340
(
6129
),
186
190
(
2013
).
13.
J. C.
Foster
,
J. R.
Wygant
,
M. K.
Hudson
,
A. J.
Boyd
,
D. N.
Baker
,
P. J.
Erickson
, and
H. E.
Spence
, “
Shock-induced prompt relativistic electron acceleration in the inner magnetosphere
,”
J. Geophys. Res.-Space Phys.
120
(
3
),
1661
1674
, https://doi.org/10.1002/2014JA020642 (
2015
).
14.
Z.
Zou
,
P.
Zuo
,
B.
Ni
,
Z.
Gao
,
G.
Wang
,
Z.
Zhao
,
X.
Feng
, and
F.
Wei
, “
Two-step dropouts of radiation belt electron phase space density induced by a magnetic cloud event
,”
Astrophys. J.
895
(
1
),
L24
(
2020
).
15.
Z.
Zou
,
P.
Zuo
,
B.
Ni
,
J.
Wei
,
W.
Zhou
,
H.
Huang
, and
Y.
Xie
, “
Competition between the source and loss processes of radiation belt source, seed, and relativistic electrons induced by a magnetic cloud event
,”
Phys. Fluids
36
(
2
),
026603
(
2024
).
16.
Z.
Su
,
Q.-G.
Zong
,
C.
Yue
,
Y.
Wang
,
H.
Zhang
, and
H.
Zheng
, “
Proton auroral intensification induced by interplanetary shock on 7 November 2004
,”
J. Geophys. Res.
116
,
A08223
, https://doi.org/10.1029/2010JA016239 (
2011
).
17.
X.
Cao
,
B.
Ni
,
D.
Summers
,
Y. Y.
Shprits
,
X.
Gu
,
S.
Fu
,
Y.
Lou
,
Y.
Zhang
,
X.
Ma
,
W.
Zhang
,
H.
Huang
, and
J.
Yi
, “
Sensitivity of EMIC wave-driven scattering loss of ring current protons to wave normal angle distribution
,”
Geophys. Res. Lett.
46
(
2
),
590
598
, https://doi.org/10.1029/2018GL081550 (
2019
).
18.
X.
Cao
,
B.
Ni
,
Y.
Yu
,
L.
Ma
,
P.
Lu
, and
X.
Wang
, “
Comparison of ring current proton losses between contributions from scattering by field line curvature and EMIC waves
,”
J. Geophys. Res. Space Phys.
128
(
12
),
e2023JA031904
, https://doi.org/10.1029/2023JA031904 (
2023
).
19.
D.
Summers
,
B.
Ni
, and
N. P.
Meredith
, “
Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 1. Theory
,”
J. Geophys. Res.
112
(
A4
),
4207
, https://doi.org/10.1029/2006JA011801 (
2007
).
20.
Y.
Lou
,
X.
Cao
,
B.
Ni
,
M.
Wu
, and
T.
Zhang
, “
Parametric dependence of polarization reversal effects on the particle pitch angle scattering by EMIC waves
,”
J. Geophys. Res. Space Phys.
126
(
12
),
e2021JA029966
, https://doi.org/10.1029/2021JA029966 (
2021
).
21.
D.
Sibeck
,
R.
Mcentire
,
A.
Lui
,
R.
Lopez
, and
S.
Krimigis
, “
Magnetic-field drift shell splitting: Cause of unusual dayside particle pitch angle distributions during storms and substorms
,”
J. Geophys. Res.
92
(
A12
),
13485
13497
, https://doi.org/10.1029/JA092iA12p13485 (
1987
).
22.
H.
Garcia
and
W.
Spjeldvik
, “
Anisotropy characteristics of geomagnetically trapped ions
,”
J. Geophys. Res.
90
(
NA1
),
347
358
, https://doi.org/10.1029/JA090iA01p00347 (
1985
).
23.
T. A.
Fritz
,
M.
Alothman
,
J.
Bhattacharjya
,
D. L.
Matthews
, and
J. S.
Chen
, “
Butterfly pitch-angle distributions observed by ISEE-1
,”
Planet. Space Sci.
51
(
3
),
205
219
(
2003
).
24.
D. L.
Turner
and
A. Y.
Ukhorskiy
, “
Outer radiation belt losses by magnetopause incursions and outward radial transport: New insight and outstanding questions from the Van Allen Probes era
,” in The Dynamic Loss of Earth's Radiation Belts (Elsevier,
2020
), pp.
1
28
.
25.
R.
Shi
,
D.
Summers
,
B.
Ni
,
J. W.
Manweiler
,
D. G.
Mitchell
, and
L. J.
Lanzerotti
, “
A statistical study of proton pitch angle distributions measured by the radiation belt storm probes ion composition experiment
,”
J. Geophys. Res. Space Phys.
121
(
6
),
5233
5249
, https://doi.org/10.1002/2015JA022140 (
2016
).
26.
J.
Yi
,
S.
Fu
,
B.
Ni
,
X.
Gu
,
M.
Hua
,
Z.
Xiang
,
X.
Cao
,
R.
Shi
, and
Y.
Zhao
, “
Global distribution of reversed energy spectra of ring current protons based on Van Allen Probes observations
,”
Geophys. Res. Lett.
48
(
4
),
e2020GL091559
, https://doi.org/10.1029/2020GL091559 (
2021
).
27.
D. G.
Mitchell
,
L. J.
Lanzerotti
,
C. K.
Kim
,
M.
Stokes
,
G.
Ho
,
S.
Cooper
,
A.
Ukhorskiy
,
J. W.
Manweiler
,
S.
Jaskulek
,
D. K.
Haggerty
,
P.
Brandt
,
M.
Sitnov
,
K.
Keika
,
J. R.
Hayes
,
L. E.
Brown
,
R. S.
Gurnee
,
J. C.
Hutcheson
,
K. S.
Nelson
,
N.
Paschalidis
,
E.
Rossano
, and
S.
Kerem
, “
Radiation belt storm probes ion composition experiment (RBSPICE)
,”
Space Sci. Rev.
179
(
1
),
263
308
(
2013
).
28.
B. H.
Mauk
,
N. J.
Fox
,
S. G.
Kanekal
,
R. L.
Kessel
,
D. G.
Sibeck
, and
A.
Ukhorskiy
, “
Science objectives and rationale for the radiation belt storm probes mission
,”
Space Sci. Rev.
179
(
1–4
),
3
27
(
2012
).
29.
T. P.
O'Brien
and
M. B.
Moldwin
, “
Empirical plasmapause models from magnetic indices
,”
Geophys. Res. Lett.
30
(
4
),
1152
, https://doi.org/10.1029/2002GL016007 (
2003
).
30.
G. D.
Reeves
,
R. H.
Friedel
,
B. A.
Larsen
,
R. M.
Skoug
,
H. O.
Funsten
,
S. G.
Claudepierre
,
J. F.
Fennell
,
D. L.
Turner
,
M. H.
Denton
,
H. E.
Spence
,
J. B.
Blake
, and
D. N.
Baker
, “
Energy-dependent dynamics of keV to MeV electrons in the inner zone, outer zone, and slot regions
,”
J. Geophys. Res. Space Phys.
121
(
1
),
397
412
, https://doi.org/10.1002/2015JA021569 (
2016
).
You do not currently have access to this content.