By hinge moment, we mean the aerodynamic torque exerted on the rudder shaft by the airflow passing through the aircraft control surface, with obtaining high-precision results often relying on wind tunnel tests. Due to the complex aerodynamic balance insulation and installation errors that must be considered in cryogenic wind tunnels, the main method for calculating hinge moments is to directly integrate surface pressure distribution information. However, it is usually difficult to arrange enough pressure taps, resulting in the accuracy failing to meet expectations. Combining the sparse wind tunnel test data and low-precision computational fluid dynamics results, this paper introduces the compressed sensing based on proper orthogonal decomposition (CS-POD) method and presents the sub-Ma model and the full-Ma model for predicting hinge moments. The number of sensors and sensor positions are determined based on the sparsity of the numerical simulations and basis functions. Then, the CS algorithm solves the basis coefficients. Finally, the hinge moments are obtained by integrating the reconstruction pressure distribution which is calculated by linearly combining the basis functions and basis coefficients. The result shows that the full-Ma model exhibits higher prediction accuracy with approximately five sensors under subsonic and transonic cases, reducing the relative error of the sub-Ma model by 2–10 times, even at high angles of attack. The mean reconstruction accuracy for the hinge moments is 97.6%, and for the normal forces, it is 94.3%. Therefore, adding relevant terms when the number of samples is small can effectively improve modeling accuracy.

1.
B.
Li
,
X.
Liu
, and
X.
Wang
, “
Study of gap effect on aerodynamic characteristics of tactical missile
,”
Tactical Missile Technol.
2
,
17
21
(
2010
).
2.
W.
Wentz
,
C.
Ostowari
, and
H.
Seetharam
, “
Effects of design variables on spoiler control effectiveness, hinge moments, and wake turbulence
,” AIAA Paper No. AIAA 1981-0072,
1981
.
3.
S. J.
Walker
and
G. S.
Aglietti
, “
Modeling the hinge moment of skew-mounted tape spring folds
,”
J. Aerosp. Eng.
20
(
2
),
102
115
(
2007
).
4.
J.
Gong
,
X.
Zhu
, and
Y.
Tao
, “
Split drag rudder hinge moment predict for flying wing aircraft
,”
Acta Aerodyn. Sin.
28
(
4
),
472
477
(
2010
).
5.
N.
Sahoo
,
K.
Suryavamshi
,
K. P. J.
Reddy
, and
D. J.
Mee
, “
Dynamic force balances for short-duration hypersonic testing facilities
,”
Exp. Fluids
38
(
5
),
606
614
(
2005
).
6.
J. P.
Leitzke
,
M. A.
Della
,
L.
Faller
,
S.
Mühlbacher-Karrer
, and
H.
Zangl
, “
Wireless differential pressure measurement for aircraft
,”
Measurement
122
,
459
465
(
2018
).
7.
Y.
Zheng
, “
Force-measuring experiment for the scale model of WDPSS in low-speed wind tunnel
,”
J. Huaqiao Univ.
30
(
2
),
119
122
(
2009
).
8.
P.
Li
,
Y.
Xie
, and
Q.
Yang
, “
Test technique and application of large-scale pressure measurement in the 2.4 m × 2.4 m transonic wind tunnel
,”
J. Exp. Fluid Mech.
16
(
2
),
92
96
(
2002
).
9.
X.
Zhao
,
X. H.
Peng
,
Z. C.
Deng
, and
W.
Zhang
, “
Fine reconstruction method of airfoil surface pressure based on multi-source data fusion
,”
J. Exp. Fluid Mech.
35
(
3
),
93
101
(
2022
).
10.
X.
Zhao
,
Z.
Deng
, and
W.
Zhang
, “
Sparse reconstruction of surface pressure coefficient based on compressed sensing
,”
Exp. Fluids
63
(
10
),
156
(
2022
).
11.
J. N.
Nielsen
and
F. K.
Goodwin
, “
Preliminary method for estimating hinge moments of all-movable controls
,” Defense Technical Information Center Report No. AD A139726 (Nielsen Engineering and Research, Inc.,
1982
).
12.
M.
Grismer
,
D.
Kinsey
, and
D.
Grismer
, “
Hinge moment predictions using CFD
,” AIAA Paper No. AIAA 2000-4325,
2000
.
13.
S.
Agrawal
,
P. J.
Malloy
, and
D. F.
Fuglsang
, “
Design load predictions on a fighter-like aircraft wing
,”
J. Aircr.
29
(
4
),
665
669
(
1992
).
14.
O. V.
Pavlenko
and
E. A.
Pigusov
, “
Numerical investigation of the aerodynamic loads and hinge moments of the flap with boundary layer control
,”
AIP Conf. Proc.
1959
(
1
),
050024
(
2018
).
15.
E. J.
Miller
,
J.
Cruz
,
S. F.
Lung
,
S.
Kota
,
G.
Ervin
,
K. J.
Lu
, and
P.
Flick
, “
Evaluation of the hinge moment and normal force aerodynamic loads from a seamless adaptive compliant trailing edge flap in flight
,” AIAA Paper No. AIAA 2016-0038,
2015
.
16.
W. F.
Lin
and
M. D.
Clarke
, “
Factors influencing the accuracy of aerodynamic hinge-moment prediction
,” Defense Technical Information Center Report No. AD A066606 (Air Force Wright Aeronautical Laboratories,
1978
).
17.
P. C.
Chen
and
D.
Liu
, “
Unified hypersonic/supersonic panel method for aeroelastic applications to arbitrary bodies
,”
J. Aircr.
39
(
3
),
499
506
(
2002
).
18.
H.
Xu
,
Q.
Huang
,
J.
Han
, and
H.
Yun
, “
Calculation of hinge moments for a folding wing aircraft based on high-order panel method
,”
Math. Probl. Eng.
2020
,
8881233
.
19.
H.
Xu
,
J.
Han
,
H.
Yun
, and
X.
Chen
, “
Correction method of airfoil thickness effect in hinge moment calculation of a folding wing
,”
Chin. J. Aeronaut.
33
(
3
),
922
932
(
2020
).
20.
W.
Cao
,
J.
Song
, and
W.
Zhang
, “
A solver for subsonic flow around airfoils based on physics-informed neural networks and mesh transformation
,”
Phys. Fluids
36
,
027134
(
2024
).
21.
W.
Cao
,
Y.
Liu
,
X.
Shan
,
C.
Gao
, and
W.
Zhang
, “
A novel convergence enhancement method based on online dimension reduction optimization
,”
Phys. Fluids
35
,
036124
(
2023
).
22.
J.
Hu
,
Z.
Dou
, and
W.
Zhang
, “
Fast fluid–structure interaction simulation method based on deep learning flow field modeling
,”
Phys. Fluids
36
,
045106
(
2024
).
23.
B.
Li
,
M.
Ge
,
X.
Li
, and
Y.
Liu
, “
A physics-guided machine learning framework for real-time dynamic wake prediction of wind turbines
,”
Phys. Fluids
36
,
035143
(
2024
).
24.
J.
Kou
and
W.
Zhang
, “
Multi-fidelity modeling framework for nonlinear unsteady aerodynamics of airfoils
,”
Appl. Math. Modell.
76
,
832
855
(
2019
).
25.
M.
Mifsud
,
A.
Vendl
,
L. U.
Hansen
, and
S.
Görtz
, “
Fusing wind-tunnel measurements and CFD data using constrained gappy proper orthogonal decomposition
,”
Aerosp. Sci. Technol.
86
,
312
326
(
2019
).
26.
X.
Wang
,
J.
Kou
, and
W.
Zhang
, “
Multi-fidelity surrogate reduced-order modeling of steady flow estimation
,”
Int. J. Numer. Methods Fluids
92
(
12
),
1826
1844
(
2020
).
27.
J.
Kou
,
W.
Zhang
, and
C.
Gao
, “
Modal analysis of transonic buffet based on POD and DMD techniques
,”
Acta Aeronaut. Astronaut. Sin.
37
(
9
),
2679
2689
(
2016
).
28.
Y.
Zhao
,
M.
Zhao
,
X.
Li
,
Z.
Liu
, and
J.
Du
, “
A modified proper orthogonal decomposition method for flow dynamic analysis
,”
Comput. Fluids
182
,
28
36
(
2019
).
29.
X.
Zhao
,
W.
Zhang
, and
Z.
Deng
, “
Aerodynamic modeling method incorporating pressure distribution information
,”
Chin. J. Theor. Appl. Mech.
54
(
5
),
2616
2626
(
2022
).
30.
J. L.
Callaham
,
K.
Maeda
, and
S. L.
Brunton
, “
Robust flow reconstruction from limited measurements via sparse representation
,”
Phys. Rev. Fluids
4
(
4
),
103907
(
2019
).
31.
I.
Bright
,
G.
Lin
, and
J. N.
Kutz
, “
Compressive sensing based machine learning strategy for characterizing the flow around a cylinder with limited pressure measurements
,”
Phys. Fluids
25
(
12
),
127102
(
2013
).
32.
Z.
Bai
,
T.
Wimalajeewa
,
Z.
Berger
,
G.
Wang
,
M.
Glauser
, and
P. K.
Varshney
, “
Low dimensional approach for reconstruction of airfoil data via compressive sensing
,”
AIAA J.
53
(
4
),
920
933
(
2015
)
33.
Z.
Wang
,
J.
Chang
,
C.
Kong
,
R.
Huang
, and
X.
Xin
, “
Experimental investigation of micro-ramp control for shock train under various incoming flow conditions
,”
Phys. Rev. Fluids
7
(
10
),
103401
(
2022
).
34.
J. L.
Bourguignon
,
J. A.
Tropp
, and
B. J.
Mckeon
, “
Compact representation of wall-bounded turbulence using compressive sampling
,”
Phys. Fluids
26
,
015109
(
2014
).
35.
Y.
Sha
,
Y.
Xu
,
Y.
Wei
, and
C.
Wang
, “
Prediction of pressure fields on cavitation hydrofoil based on improved compressed sensing technology
,”
Phys. Fluids
36
,
013321
(
2024
).
36.
R.
Baraniuk
, “
Compressive Sensing
,”
IEEE Signal Process. Mag.
24
(
4
),
118
121
(
2007
).
37.
X.
Huang
, “
Compressive sensing and reconstruction in measurements with an aerospace application
,”
AIAA J.
51
(
4
),
1011
1016
(
2013
).
38.
W.
Yu
and
X.
Huang
, “
Compressive sensing based spinning mode detections by in-duct microphone arrays
,”
Meas. Sci. Technol.
27
(
5
),
055901
(
2016
).
39.
H.
Bu
,
X.
Huang
, and
X.
Zhang
, “
Compressive sensing method with enhanced sparsity for aeroengine duct mode detection
,”
J. Acoust. Soc. Am.
146
,
EL39
EL44
(
2019
).
40.
H.
Bu
,
W.
Yu
,
P.
Kwan
, and
X.
Huang
, “
Wind-tunnel investigation on the compressive-sensing technique for aeroengine fan noise detection
,”
AIAA J.
56
(
3
),
3536
3511
(
2018
).
41.
W.
Yu
,
Z.
Ma
,
A. S. H.
Lau
, and
X.
Huang
, “
Analysis and experiment of the compressive sensing approach for duct mode detection
,”
AIAA J.
56
(
2
),
648
657
(
2018
).
42.
X.
Huang
, “
A tutorial example of duct acoustics mode detections with machine-learning-based compressive sensing
,”
J. Acoust. Soc. Am.
146
(
4
),
EL342
EL346
(
2019
).
43.
E. J.
Candès
and
M. B.
Wakin
, “
An introduction to compressive sampling
,”
IEEE Signal Process. Mag.
25
(
2
),
21
30
(
2008
).
44.
E. J.
Candès
,
J. K.
Romberg
, and
T.
Tao
, “
Stable signal recovery from incomplete and inaccurate measurements
,”
Commun. Pure Appl. Math.
59
(
8
),
1207
1223
(
2006
).
45.
S. K.
Sahoo
and
A.
Makur
, “
Signal recovery from random measurements via extended orthogonal matching pursuit
,”
IEEE Trans. Inf. Theory
53
(
12
),
4655
4666
(
2015
).
46.
E. J.
Candès
, “
Compressive sampling
,”
Calif. Inst. Technol.
17
(
2
),
1433
1452
(
2006
).
47.
J.
Romberg
, “
Imaging via compressive sampling
,”
IEEE Signal Process. Mag.
25
(
2
),
14
20
(
2008
).
48.
W.
Zhang
,
J.
Kou
, and
Y.
Liu
, “
Prospect of artificial intelligence empowered fluid mechanics
,”
Acta Aeronaut. Astronaut. Sin.
42
(
4
),
524689
524689
(
2021
).
49.
Q.
Zhang
,
C.
Gao
,
F.
Zhou
,
D.
Yang
, and
W.
Zhang
, “
Study on flow noise characteristic of transonic deep buffeting over an airfoil
,”
Phys. Fluids
35
(
4
),
046109
(
2023
).
50.
Q.
Zhang
,
C.
Gao
,
H.
Wang
,
W.
Zhang
, and
D.
Yang
, “
Effects of bulb seal on slat flow dynamics and slat tones
,”
Eur. J. Mech., B: Fluids
100
,
124
140
(
2023
).
51.
K.
Taira
,
S. L.
Brunton
,
S. T. M.
Dawson
,
C. W.
Rowley
,
T.
Colonius
,
B. J.
McKeon
,
O. T.
Schmidt
,
S.
Gordeyev
,
V.
Theofilis
, and
L. S.
Ukeiley
, “
Modal analysis of fluid flows: An overview
,”
AIAA J.
55
(
12
),
4013
4041
(
2017
).
52.
M. H.
Tang
and
G. P. E.
Pearson
, “
Flight-measured HL-10 lifting body center fin loads and control surface hinge moments and correlation with wind-tunnel predictions
,” Technical Report No. NASA-TM-X-2419 (
NASA
,
1971
).
You do not currently have access to this content.