The architecture of real dandelion seeds is diverse. Previous studies have primarily focused on the flow patterns and drag coefficients of dandelion seeds with a pappus angle no greater than 180°, but have paid less attention to the cases of the pappus angle larger than 180°. This work therefore numerically investigated the flow patterns and drag coefficients of dandelion seeds with the pappus angle larger than 180° when the speed of incident flow is 0.2 m/s, using double-layered models consisting of two oppositely oriented filament layers. The simulated results were then compared to those obtained from single-layered models consisting of identical number of but leeward-oriented filaments (the pappus angle lower than 180°). It reveals that, either single-layered or double-layered models, the length (L) and width (W) of separated vortex rings increase, drag coefficients (CD) increase, but the shape index (L/W) and the relative location of separated vortex rings (zu) decrease, as the number of filaments increases. At a given filament number, L, W, and zu in double-layered models are smaller than those in single-layered models, but L/W and CD in double-layered models are larger than those in single-layered models, attributed to the windward-oriented filaments. In double-layered models, thanks to small difference in the drag force but significant difference in the projected area, CD is significantly higher when both windward-oriented and leeward-oriented filaments are installed at identical locations on the central disk's perimeter compared to cases where windward-oriented and leeward-oriented filaments are installed at different locations.

1.
C.
Cummins
,
M.
Seale
,
A.
Macente
,
D.
Certini
,
E.
Mastropaolo
,
I. M.
Viola
, and
N.
Nakayama
, “
A separated vortex ring underlies the flight of the dandelion
,”
Nature
562
(
7727
),
414
418
(
2018
).
2.
Z.
Sun
,
Q.
Wang
,
Q.
Xiao
,
O.
Batkhishig
, and
M.
Watanabe
, “
Diverse responses of remotely sensed grassland phenology to interannual climate variability over frozen ground regions in Mongolia
,”
Remote Sens.
7
(
1
),
360
377
(
2014
).
3.
O.
Tackenberg
,
P.
Poschlod
, and
S.
Kahmen
, “
Dandelion seed dispersal: The horizontal wind speed does not matter for long-distance dispersal-it is updraft!
,”
Plant Biol.
5
(
05
),
451
454
(
2003
).
4.
Y.
Shigenaga
and
H.
Hasegawa
, “
Wake flow visualization of a dandelion pappus with posture change
,”
J. Fluid Sci. Technol.
18
(
1
),
JFST0019
(
2023
).
5.
Z.
Xu
,
X.
Chang
,
H.
Meng
, and
D.
Gao
, “
Dynamic wake behind a dandelion pappus: PIV and smoke-wire visualization
,”
J. Visualization
26
(
4
),
779
794
(
2023
).
6.
F. S.
Qiu
,
T. B.
He
, and
W. Y.
Bao
, “
Effect of porosity on separated vortex rings of dandelion seeds
,”
Phys. Fluids
32
(
11
),
113104
(
2020
).
7.
Y.
Dong
,
K.
Hu
,
Y.
Wang
, and
Z.
Zhang
, “
The steady vortex and enhanced drag effects of dandelion seeds immersed in low-Reynolds-number flow
,”
AIP Adv.
11
(
8
),
085320
(
2021
).
8.
F. S.
Qiu
,
B. W.
Wang
,
Y. M.
Du
, and
H. Y.
Qian
, “
Numerical investigation on the flow characteristics of model dandelion seeds with angles of attitude
,”
Phys. Fluids
33
(
11
),
113107
(
2021
).
9.
S.
Li
,
D.
Pan
,
J.
Li
, and
X.
Shao
, “
Drag and wake structure of a quasi-dandelion pappus model at low and moderate Reynolds numbers: The effects of filament width
,”
Phys. Fluids
33
(
12
),
121904
(
2021
).
10.
F. S.
Qiu
,
H. Y.
Qian
,
Y. M.
Du
, and
C. J.
Li
, “
The pappus angle as a key factor in the entire separation of a vortex ring from a dandelion seed's pappus
,”
Phys. Fluids
34
(
8
),
083101
(
2022
).
11.
L.
Qin
,
Z.
Jian
,
Y.
Xu
, and
L.
Ma
, “
On the attitude stability of flying dandelion seeds
,”
Phys. Fluids
35
(
8
),
081904
(
2023
).
12.
Y.
Dong
,
Y.
Ni
,
K.
Hu
,
T.
Zhang
,
Z.
Zhang
, and
Y.
Wang
, “
Transition to turbulence in the wake of dandelion-like spoke disk
,”
Phys. Fluids
35
(
10
),
104113
(
2023
).
13.
S.
Li
,
D.
Pan
,
L.
Zeng
,
J.
Li
, and
X.
Shao
, “
Flow over a radiating multi-filamentous structure with various opening angles: From disk-like to cone-like shape
,”
Phys. Fluids
36
(
3
),
033622
(
2024
).
14.
L. T.
Fu
,
Q.
Fan
,
Z. L.
Huang
, and
F.
Chen
, “
Flow pattern change and drag coefficient enhancement for non-flattened pappus models due to reversed wind direction
,”
Acta Mech. Sin.
40
,
323619
(
2024
).
15.
S. C.
Chen
and
I.
Giladi
, “
Variation in morphological traits affects dispersal and seedling emergence in dispersive diaspores of Geropogon hybridus
,”
Am. J. Bot.
107
(
3
),
436
444
(
2020
).
16.
M.
Seale
,
O.
Zhdanov
,
M. B.
Soons
,
C.
Cummins
,
E.
Kroll
,
M. R.
Blatt
,
H.
Zare-Behtash
,
A.
Busse
,
E.
Mastropaolo
,
J. M.
Bullock
,
I. M.
Viola
, and
N.
Nakayama
, “
Environmental morphing enables informed dispersal of the dandelion diaspore
,”
Elife
11
,
e81962
(
2022
).
17.
M. E.
Lawrence
, “
Senecio L. (Asteraceae) in Australia: Reproductive biology of a genus found primarily in unstable environments
,”
Aust. J. Bot.
33
(
2
),
197
208
(
1985
).
18.
G. R.
Matlack
, “
Diaspore size, shape, and fall behavior in wind-dispersed plant species
,”
Am. J. Bot.
74
(
8
),
1150
1160
(
1987
).
19.
M. A.
McGinley
and
E. J.
Brigham
, “
Fruit morphology and terminal velocity in Tragopogon dubious (L.)
,”
Funct. Ecol.
3
(
4
),
489
496
(
1989
).
20.
D. F.
Greene
and
E. A.
Johnson
, “
The aerodynamics of plumed seeds
,”
Funct. Ecol.
4
(
1
),
117
125
(
1990
).
21.
O.
Tackenberg
,
P.
Poschlod
, and
S.
Bonn
, “
Assessment of wind dispersal potential in plant species
,”
Ecol. Monogr.
73
(
2
),
191
205
(
2003
).
22.
V.
Casseau
,
G.
De Croon
,
D.
Izzo
, and
C.
Pandolfi
, “
Morphologic and aerodynamic considerations regarding the plumed seeds of Tragopogon pratensis and their implications for seed dispersal
,”
PLoS One
10
(
5
),
e0125040
(
2015
).
23.
L. N.
Mickaill
,
S. A.
Bell
, and
C. T.
Beranek
, “
Dispersal potential in two restricted and five wide-ranging Senecio (Asteraceae) taxa from central eastern New South Wales, Australia
,”
Aust. J. Bot.
68
(
5
),
333
344
(
2020
).
24.
L. T.
Fu
,
Q.
Fan
, and
Z. L.
Huang
, “
Wind speed acceleration around a single low solid roughness in atmospheric boundary layer
,”
Sci. Rep.
9
(
1
),
12002
(
2019
).
25.
F. R.
Menter
, “
Two-equation eddy-viscosity turbulence models for engineering applications
,”
AIAA J.
32
(
8
),
1598
1605
(
1994
).
26.
Ansys® Fluent
,
Fluent Theory Guide, Release 15.0
(
ANSYS Inc
.,
Canonsburg
,
2013
).
27.
M.
Ciuti
,
G. A.
Zampogna
,
F.
Gallaire
,
S.
Camarri
, and
P. G.
Ledda
, “
On the effect of a penetrating recirculation region on the bifurcations of the flow past a permeable sphere
,”
Phys. Fluids
33
(
12
),
124103
(
2021
).
28.
C. L.
Van Den Elzen
,
N.
Sigman
, and
N. C.
Emery
, “
Do seed dispersal strategies reflect adaptation to environmental variability?
,”
Funct. Ecol.
37
(
7
),
1922
1934
(
2023
).
You do not currently have access to this content.