The vast desert regions of the world offer an excellent foundation for developing the ground-mounted solar photovoltaic (PV) industry. However, the impact of wind-blown sand on solar PV panels cannot be overlooked. In this study, numerical simulations were employed to investigate the dynamics of the wind-blown sand field, sand-particle concentration, and the impact of wind-blown sand loading on independent ground-mounted PV panels. The results indicate that with increasing horizontal inclination angle, the area of maximum sand-particle concentration shifts from the top toward the bottom of the panel. On the surface of the PV panel, the pressure coefficient of wind-blown sand experiences a gradual decrease from the leading edge to the trailing edge. In comparison to a net wind environment, the stand-alone PV module in wind-blown sand environment shows significant increases of resistance by 9%–21%, lift by 8%–20%, moments in the X direction by 6%–11%, and moments in the Y direction by 14%–41%. The design of a stand-alone PV module should prioritize resistance to both lift and resistance when it is positioned perpendicular to the wind direction. Conversely, a design that is resistant to overturning should be considered when the wind is oblique.

1.
M.
Tawalbeh
,
A.
Al-Othman
,
F.
Kafiah
et al, “
Environmental impacts of solar photovoltaic systems: A critical review of recent progress and future outlook
,”
Sci. Total Environ.
759
,
143528
(
2021
).
2.
A. S.
Abdelrazik
,
B.
Shboul
,
M.
Elwardany
et al, “
The recent advancements in the building integrated photovoltaic/thermal (BIPV/T) systems: An updated review
,”
Renewable Sustainable Energy Rev.
170
,
112988
(
2022
).
3.
A. Z.
Tze
,
S.
Mohamed
,
K.
Mohamad
et al, “
A comprehensive study of renewable energy sources: Classifications, challenges and suggestions
,”
Energy Strategy Rev.
43
,
100939
(
2022
).
4.
X. P.
Guo
,
Y. I.
Dong
, and
D. F.
Ren
, “
CO2 emission reduction effect of photovoltaic industry through 2060 in China
,”
Energy
269
,
126692
(
2023
).
5.
Q.
Zhou
,
P. X.
Dong
,
M. Y.
Li
, and
Z.
Wang
, “
Analyzing the interactions between photovoltaic system and its ambient environment using CFD techniques: A review
,”
Energy Build.
296
,
113394
(
2023
).
6.
D.
Valentín
,
C.
Valero
,
M.
Egusquiza
, and
A.
Presas
, “
Failure investigation of a solar tracker due to wind-induced torsional galloping
,”
Eng. Failure Anal.
135
,
106137
(
2022
).
7.
J. X.
Wang
,
Q. S.
Yang
,
P. V.
Phuc
, and
Y.
Tamura
, “
Characteristics of conical vortices and their effects on wind pressures on flat-roof-mounted solar arrays by LES
,”
J. Wind Eng. Ind. Aerodyn.
200
,
104146
(
2020
).
8.
H. Y.
Peng
,
S. S.
Song
,
H. J.
Liu
et al, “
Investigation of wind loading characteristics of roof-mounted solar panels on tall buildings
,”
Sustainable Energy Technol. Assess.
54
,
102800
(
2022
).
9.
A. M.
Aly
and
E.
Rone
, “
Wind loads on a low-rise gable roof with and without solar panels and comparison to design standards
,”
Sustainable Resilient Infrastruct.
8
(
6
),
589
609
(
2023
).
10.
A. M.
Aly
and
G.
Bitsuamlak
, “
Aerodynamics of ground-mounted solar panels: Test model scale effects
,”
J. Wind Eng. Ind. Aerodyn.
123
,
250
260
(
2013
).
11.
A.
Abiola-Ogedengbe
,
H.
Hangan
, and
K.
Siddiqui
, “
Experimental investigation of wind effects on a standalone photovoltaic (PV) module
,”
Renewable Energy
78
,
657
665
(
2015
).
12.
C. M.
Jubayer
and
H.
Hangan
, “
Numerical simulation of wind effects on a stand-alone ground mounted photovoltaic (PV) system
,”
J. Wind Eng. Ind. Aerodyn.
134
,
56
66
(
2014
).
13.
C. M.
Jubayer
and
H.
Hangan
, “
A numerical approach to the investigation of wind loading on an array of ground mounted solar photovoltaic (PV) panels
,”
J. Wind Eng. Ind. Aerodyn.
153
,
60
70
(
2016
).
14.
G. P.
Reina
and
G.
De Stefano
, “
Computational evaluation of wind loads on sun-tracking ground-mounted photovoltaic panel arrays
,”
J. Wind Eng. Ind. Aerodyn.
170
,
283
293
(
2017
).
15.
O.
Yemenici
and
M. O.
Aksoy
, “
An experimental and numerical study of wind effects on a ground-mounted solar panel at different panel tilt angles and wind directions
,”
J. Wind Eng. Ind. Aerodyn.
213
,
104630
(
2021
).
16.
S. K.
Laha
,
P. K.
Sadhu
,
R. S.
Dhar
et al, “
Analysis of mechanical stress and structural deformation on a solar photovoltaic panel through various wind loads
,”
Microsyst. Technol.
27
,
3465
3474
(
2021
).
17.
J. B.
Sun
,
Y.
He
,
X. Y.
Li
et al, “
CFD simulations for layout optimal design for ground-mounted photovoltaic panel arrays
,”
J. Wind Eng. Ind. Aerodyn.
242
,
105558
(
2023
).
18.
X.
Chen
,
Y.
Gao
,
Narenerile
et al, “
Simulation analysis of effects of wind field and photovoltaic DC field allocation on aeolian-sand structure
,”
J. Beijing Univ.
39
(
8
),
68
76
(
2017
) (in Chinese).
19.
X.
Chen
,
Y.
Gao
,
B.
Zhai
et al, “
Characterization of wind-sand flow transport of photovoltaic farms in sandy areas
,”
Arid Zone Res.
36
(
03
),
684
690
(
2019
). (in Chinese).
20.
B.
Huang
,
Z. N.
Li
,
Z. F.
Zhao
et al, “
Near-ground impurity-free wind and wind-driven sand of photovoltaic power stations in a desert area
,”
J. Wind Eng. Ind. Aerodyn.
179
,
483
502
(
2018
).
21.
G. D.
Tang
,
Z. J.
Meng
,
Y.
Gao
et al, “
Analysis of near-surface sand transport fluxes under the disturbance of photovoltaic facilities in sandy areas
,”
Arid Zone Res.
37
(
03
),
739
748
(
2020
) (in Chinese).
22.
G. D.
Tang
,
Z. J.
Meng
,
Y.
Gao
, and
X. H.
Dang
, “
Wind-sand movement characteristics and erosion mechanism of a solar photovoltaic array in the middle of the Hobq Desert, Northwestern China
,”
J. Mt. Sci.
18
(
5
),
1340
1351
(
2021
).
23.
J. H.
Xiao
,
D. T.
Ye
,
X. S.
Xie
et al, “
Numerical simulation of the airflow at the world's largest concentrated solar power plant in a desert region
,”
Sol. Energy
232
,
421
432
(
2022
).
24.
T.
Zarei
,
M.
Abdolzadeh
, and
M.
Yaghoubi
, “
Comparing the impact of climate on dust accumulation and power generation of PV modules: A comprehensive review
,”
Energy Sustain Dev.
66
,
238
270
(
2022
).
25.
M.
Rashid
,
M.
Yousif
,
Z.
Rashid
et al, “
Effect of dust accumulation on the performance of photovoltaic modules for different climate regions
,”
Heliyon
9
(
12
),
e23069
(
2023
).
26.
B. H.
He
,
H.
Lu
,
C. X.
Zheng
, and
Y. L.
Wang
, “
Characteristics and cleaning methods of dust deposition on solar photovoltaic modules—A review
,”
Energy
263
,
126083
(
2023
).
27.
M. Z.
Zhao
,
L. L.
Wu
,
S.
Wang
, and
K.
Liu
, “
Study on the effect of photovoltaic array on desert wind and sand movement
,”
J. Inner Mong. Univ. Technol.
41
(
02
),
137
149
(
2022
) (in Chinese).
28.
H.
Mittal
,
A.
Sharma
, and
A.
Gairola
, “
Numerical simulation of pedestrian level wind conditions: Effect of building shape and orientation
,”
Environ. Fluid Mech.
20
(
4
),
663
688
(
2020
).
29.
Y.
Wu
,
N.
Gao
,
J.
Niu
et al, “
Numerical study on natural ventilation of the wind tower: Effects of combining with different window configurations in a low-rise house
,”
Build. Environ.
188
,
107450
(
2021
).
30.
C. X.
Zhuo
,
X.
Tong
,
B. E.
Hao
et al, “
Feasibility analysis using a porous media model to simulate the wind protection effect of windbreak forests
,”
Land Degrad. Dev.
34
(
1
),
207
220
(
2023
).
31.
M.
Horvat
,
L.
Bruno
, and
S.
Khris
, “
CWE study of wind flow around railways: Effects of embankment and track system on sand sedimentation
,”
J. Wind Eng. Ind. Aerodyn.
208
,
104476
(
2021
).
32.
E. C. A.
Kaiss
and
N. M.
Hassan
, “
Numerical modeling of dust deposition rate on ground-mounted solar photovoltaic panels
,”
J. Sol. Energy Eng.
145
(
4
),
1
41
(
2023
).
33.
F. R.
Menter
,
M.
Kuntz
, and
R.
Langtry
, “
Ten years of industrial experience with the SST turbulence model
,”
Heat Mass Transfer
4
(
1
),
625
632
(
2003
).
34.
V.
Sarafrazi
and
M. R.
Talaee
, “
Simulation of wall barrier properties along a railway track during a sandstorm
,”
Aeolian Res.
46
,
100626
(
2020
).
35.
H.
Peng
,
A. F.
Jin
,
S. Z.
Zhang
, and
B.
Zheng
, “
Numerical simulation and parameter optimization of a new reed–nylon net combined sand fence
,”
Sustainability
15
(
18
),
13920
(
2023
).
36.
C.
Liu
and
H.
Wang
, “
Design parameter optimization for protection measures targeting the bridge–subgrade transition section in a wind-blown sand region
,”
Bull. Eng. Geol. Environ.
83
(
1
),
5
(
2024
).
37.
S. A.
Bekele
and
H.
Horia
, “
A comparative investigation of the TTU pressure envelope -Numerical versus laboratory and full scale results
,”
Wind Struct.
5
(
2
),
337
346
(
2002
).
38.
L.
Raffaele
,
L.
Bruno
,
F.
Pellerey
, and
L.
Preziosi
, “
Windblown sand saltation: A statistical approach to fluid threshold shear velocity
,”
Aeolian Res.
23
,
79
91
(
2016
).
39.
ESDU
, “
Strong winds in the atmospheric boundary layer. Part 1: Mean hourly wind speeds
,” Engineering Science Data Unit Number 82026,
1982
.
40.
ESDU
, “
Strong winds in the atmospheric boundary layer. Part 2: Discreet gust speeds
,” Engineering Science Data Unit Number 83045,
1983
.
41.
L. J.
Clancy
,
Aerodynamics
(
Pitman Publishing Limited
,
London
,
1975
), Chap. 3.6, ISBN: 0-273-01120-0.
42.
M.
Zhang
, “
Numerical simulation of wind-blown-sand two phase flow field around the building based on fluent
,” M.D. dissertation (
Harbin Institute of Technology
,
Harbin, China
,
2008
) (in Chinese).
43.
B.
Huang
,
Z. N.
Li
,
T. Y.
Xiao
et al, “
Blowing sand flow profiles with different particle sizes and blowing sand load characteristics on low-rise buildings
,”
J. Build Eng.
80
,
108083
(
2023
).
You do not currently have access to this content.