This study presents a simulation method for turbulent flow-induced vibrations of cantilever rods with a semi-spherical end exposed to axial flow, a configuration investigated for the first time. This simulation strategy has been developed using solids4Foam, a toolkit for the open-source package OpenFOAM, which uses the finite-volume approach. The fluid and solid domain equations are solved separately. Coupling is achieved with the Interface Quasi-Newton Inverse Least-Squares (IQN-ILS) algorithm. The mean flow is described by the unsteady Reynolds-averaged Navier–Stokes equations. Turbulence is modeled through either the stress-transport model of Launder, Reece, and Rodi or the effective-viscosity k ω shear stress transport model, both with the wall-function approach accounting for near-wall turbulence. The methodology is validated using experimental data produced during this study. The simulations show good agreement with the measured values of the oscillation amplitude and frequency for both flow directions (toward rod free-end and away from it). Turbulence model comparisons show that (a) Reynolds stress transport models are necessary to reproduce the vibration amplitude and (b) wall functions enable the simulations to be completed in realistic time scales. The significance to the fluid–solid-interaction (FSI) process of a so far overlooked (with the exception of a couple of recent studies) dimensionless number, the ratio of the flow dynamic pressure to the rod's Young's modulus of elasticity, is also explored. Simulations, which decouple the variation of this dimensionless number from that of the Reynolds number, demonstrate this number's strong effect on the vibration amplitude. This finding is important to the contact of further FSI studies and the scaling of FSI data.

1.
Bakosi
,
J.
,
Christon
,
M. A.
, and
Lowrie
,
R. B.
, “
Large-eddy simulations of turbulent flow for grid-to-rod fretting in nuclear reactors
,”
Nucl. Eng. Des.
262
,
544
561
(
2013
).
2.
Benhamadouche
,
S.
, “
On the use of (U) RANS and LES approaches for turbulent incompressible single phase flows in nuclear engineering applications
,”
Nucl. Eng. Des.
312
,
2
11
(
2017
).
3.
Blau
,
P. J.
, “
A multi-stage wear model for grid-to-rod fretting of nuclear fuel rods
,”
Wear
313
(
1–2
),
89
96
(
2014
).
4.
Blevins
,
R. D.
,
Flow-Induced Vibration
, 2nd ed. (
Krieger Publishing Company
,
Malabar, FL
,
2001
).
5.
Bruneau
,
D. A.
,
Valen-Sendstad
,
K.
, and
Steinman
,
D. A.
, “
Onset and nature of flow-induced vibrations in cerebral aneurysms via fluid–structure interaction simulations
,”
Biomech. Model. Mechanobiol.
22
(
3
),
761
771
(
2023
).
6.
Cardiff
,
P.
and
Demirdžić
,
I.
, “
Thirty years of the finite volume method for solid mechanics
,”
rch. Comput. Methods Eng.
28
(
5
),
3721
3780
(
2021
).
7.
Chen
,
S. S.
, “
Flow-induced vibration of circular cylindrical structures
,”
Report No. ANL-85-51
,
1985
.
8.
Cioncolini
,
A.
,
Silva-Leon
,
J.
,
Cooper
,
D.
,
Quinn
,
M. K.
, and
Iacovides
,
H.
, “
Axial-flow-induced vibration experiments on cantilevered rods for nuclear reactor applications
,”
Nucl. Eng. Des.
338
,
102
118
(
2018
).
9.
Cioncolini
,
A.
,
Zhang
,
S.
,
Nabawy
,
M. R.
,
Li
,
H.
,
Cooper
,
D.
, and
Iacovides
,
H.
, “
Experiments on axial-flow-induced vibration of a free-clamped/clamped-free rod for light-water nuclear reactor applications
,”
Ann. Nucl. Energy
190
,
109900
(
2023
).
10.
Craft
,
T. J.
,
Gerasimov
,
A. V.
,
Iacovides
,
H.
, and
Launder
,
B. E.
, “
Progress in the generalization of wall-function treatments
,”
Int. J. Heat Fluid Flow
23
(
2
),
148
160
(
2002
).
11.
De Nayer
,
G.
,
Kalmbach
,
A.
,
Breuer
,
M.
,
Sicklinger
,
S.
, and
Wüchner
,
R.
, “
Flow past a cylinder with a flexible splitter plate: A complementary experimental–numerical investigation and a new FSI test case (FSI-PfS-1a)
,”
Comput. Fluids
99
,
18
43
(
2014
).
12.
De Pauw
,
B.
,
Weijtjens
,
W.
, and
Vanlanduit
,
S.
, “
Operational modal analysis of flow-induced vibration of nuclear fuel rods in a turbulent axial flow
,”
Nucl. Eng. Des.
284
,
19
26
(
2015
).
13.
De Ridder
,
J.
,
Degroote
,
J.
,
Van Tichelen
,
K.
,
Schuurmans
,
P.
, and
Vierendeels
,
J.
, “
Modal characteristics of a flexible cylinder in turbulent axial flow from numerical simulations
,”
J. Fluids Struct.
43
,
110
123
(
2013
).
14.
De Santis
,
D.
and
Shams
,
A.
, “
Numerical modeling of flow induced vibration of nuclear fuel rods
,”
Nucl. Eng. Des.
320
,
44
56
(
2017
).
15.
De Santis
,
D.
and
Shams
,
A.
, “
Analysis of flow induced vibrations and static deformations of fuel rods considering the effects of wire spacers and working fluids
,”
J. Fluids Struct.
84
,
440
465
(
2019
).
16.
Eaton
,
J. W.
, “
GNU Octave and reproducible research
,”
J. Process Control
22
(
8
),
1433
1438
(
2012
).
17.
Eaton
,
J. W
,
Bateman
,
D.
,
Hauberg
,
S.
, and
Wehbring
,
R.
,
GNU Octave Version 5.2.0 Manual: A High-Level Interactive Language for Numerical Computations
, 5th ed. (
Free Software Foundation
,
2019
).
18.
Elmahdi
,
A. M.
,
Lu
,
R.
, and
Conner
,
M. E.
, “
Flow induced vibration forces on a fuel rod by les CFD analysis
,” The 14th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Toronto, Ontario, Canada, 25–29 September 2011.
19.
Hanjalic
,
K.
and
Launder
,
B.
,
Modelling Turbulence in Engineering and the Environment: Second-Moment Routes to Closure
(
Cambridge University Press
,
2011
).
20.
Hirst
,
J.
,
Wang
,
J.
, and
Nabawy
,
M. R.
, “
Long-term power degradation testing of piezoelectric vibration energy harvesters for low-frequency applications
,”
Eng. Res. Express
2
(
3
),
035026
(
2020
).
21.
Hu
,
Z.
, “
Developments of analyses on grid-to-rod fretting problems in pressurized water reactors
,”
Prog. Nucl. Energy
106
,
293
299
(
2018
).
22.
International Atomic Energy Agency
, see https://www.iaea.org/sites/default/files/gc/gc63-5.pdf for “
IAEA annual report 2018
” (
2018
).
23.
Jiang
,
H.
,
Qu
,
J.
, and
Lu
,
R. Y.
, “
Grid-to-rod flow-induced impact study for PWR fuel in reactor
,”
Prog. Nucl. Energy
91
,
355
361
(
2016
).
24.
Kaneko
,
S.
,
Nakamura
,
T.
, and
Inada
,
F.
,
Flow-Induced Vibrations: Classifications and Lessons from Practical Experiences
, 2nd ed. (
Elsevier
,
London, UK
,
2014
).
25.
Kim
,
K. T.
, “
A study on the grid-to-rod fretting wear-induced fuel failure observed in the 16× 16KOFA fuel
,”
Nucl. Eng. Des.
240
(
4
),
756
762
(
2010
).
26.
Kim
,
K. T.
, “
Applicability of out-of-pile fretting wear tests to in-reactor fretting wear-induced failure time prediction
,”
J. Nucl. Mater.
433
(
1–3
),
364
371
(
2013
).
27.
Kottapalli
,
S.
,
Shams
,
A.
,
Zuijlen
,
A. H.
, and
Pourquie
,
M. J. B. M.
, “
Numerical investigation of an advanced U-RANS based pressure fluctuation model to simulate non-linear vibrations of nuclear fuel rods due to turbulent parallel-flow
,”
Ann. Nucl. Energy
128
,
115
126
(
2019
).
28.
Kumar
,
V.
,
Assam
,
A.
, and
Prabhakaran
,
D.
, “
Dynamics of a wall-mounted cantilever plate under low Reynolds number transverse flow in a two-dimensional channel
,”
Phys. Fluids
35
(
8
),
083605
(
2023
).
29.
Launder
,
B. E.
,
Reece
,
G. J.
, and
Rodi
,
W.
, “
Progress in the development of a Reynolds-stress turbulence closure
,”
J. Fluid Mech.
68
(
3
),
537
566
(
1975
).
30.
Li
,
D.
,
Mei
,
N.
, and
Liu
,
D.
, “
Numerical study of flow-induced vibration in pipeline on offshore platform
,” in
International Ocean and Polar Engineering Conference
,
Kitakyushu, Japan
,
26–31 May
2002
.
31.
Li
,
H.
,
Cioncolini
,
A.
,
Zhang
,
S.
,
Iacovides
,
H.
, and
Nabawy
,
M. R.
, “
Tip shape effects on the axial-flow-induced vibration of a cantilever rod
,”
J. Fluids Struct.
127
,
104132
(
2024
).
32.
Liu
,
Z. G.
,
Liu
,
Y.
, and
Lu
,
J.
, “
Numerical simulation of the fluid-structure interaction for two simple fuel assemblies
,”
Nucl. Eng. Des.
258
,
1
12
(
2013
).
33.
Menter
,
F. R.
, “
Review of the shear-stress transport turbulence model experience from an industrial perspective
,”
Int. J. Comput. Fluid Dyn.
23
(
4
),
305
316
(
2009
).
34.
Naudascher
,
E.
and
Rockwell
,
D.
,
Flow-Induced Vibrations: An Engineering Guide
(
Dover Publications, Inc
.,
New York
,
2005
).
35.
Nazari
,
T.
,
Rabiee
,
A.
, and
Kazeminejad
,
H.
, “
Flow-induced vibration analysis of nuclear fuel rods using equivalent fuel element model
,”
Nucl. Eng. Des.
363
,
110639
(
2020
).
36.
Norddine
,
T.
and
Benhamadouche
,
S.
, “
Wall-resolved LES and URANS simulations of an axial flow on a cantilevered rod at a moderate Reynolds number
,” in
20th International Topical Meeting on Nuclear Reactor Thermal Hydraulics Conference
,
Washington, DC
,
20–25 August
2023
.
37.
Okita
,
Y.
and
Iacovides
,
H.
, “
Comparison of EVM and DSM in flow and heat transfer of turbine blades internal cooling passages with a wall function method
,” in
ECCOMAS CFD 2001 Conference, Swansea
(The Institute of Mathematics and its Applications,
2003
), pp.
585
597
.
38.
Paidoussis
,
M. P.
, “
Dynamics of flexible slender cylinder in axial flow: Part 2: Experiment
,”
J. Fluid Mech.
26
,
717
751
(
1966
).
39.
Pauzi
,
A. M.
,
Iacovides
,
H.
, and
Cioncolini
,
A.
, “
URANS simulation and experimental validation of axial flow-induced vibrations on a blunt-end cantilever rod for nuclear applications
,” Research Square preprint https://doi.org/10.21203/rs.3.rs-4014582/v1 (
2024
).
40.
Rinaldi
,
S.
and
Paidoussis
,
M. P.
, “
Theory and experiments on the dynamics of a free-clamped cylinder in confined axial air-flow
,”
J. Fluids Struct.
28
,
167
179
(
2012
).
41.
Salachna
,
J.
,
Cioncolini
,
A.
, and
Iacovides
,
H.
, “
Benchmark simulation of the flow-induced vibrations for nuclear applications
,”
Ann. Nucl. Energy
180
,
109425
(
2023
).
42.
Salman
,
H. E.
and
Yazicioglu
,
Y.
, “
Flow-induced vibration analysis of constricted artery models with surrounding soft tissue
,”
J. Acoust. Soc. Am.
142
(
4
),
1913
1925
(
2017
).
43.
Schewe
,
G.
, “
Influence of the Reynolds-number on flow-induced vibrations of generic bridge sections
,” in
International Conference on Bridges (SECON)
,
Dubrovnik, Croatia
,
21–24 May
2006
.
44.
ter Hofstede
,
E.
,
Kottapalli
,
S.
, and
Shams
,
A.
, “
Numerical prediction of flow induced vibrations in nuclear reactor applications
,”
Nucl. Eng. Des.
319
,
81
90
(
2017
).
45.
Wambsganss
,
M. W.
and
Jendrzejczyk
,
J. A.
, “
The effect of trailing end geometry on the vibration of a circular cantilevered rod in nominally axial flow
,”
J. Sound Vib.
65
(
2
),
251
258
(
1979
).
46.
Wang
,
J.
,
Nabawy
,
M. R.
, and
Cioncolini
,
A.
, “
Solar panels as tip masses in low frequency vibration harvesters
,”
Energies
12
(
20
),
3815
(
2019
).
47.
Wang
,
J.
,
Nabawy
,
M. R.
, and
Cioncolini
,
A.
, “
Planform geometry and excitation effects of PVDF-based vibration energy harvesters
,”
Energies
14
(
1
),
211
(
2021
).
48.
Yang
,
K.
,
Cioncolini
,
A.
, and
Nabawy
,
M. R.
, “
Mechanical durability assessment of an energy-harvesting piezoelectric inverted flag
,”
Energies
15
(
1
),
77
(
2021a
).
49.
Yang
,
K.
,
Nabawy
,
M. R.
, and
Cioncolini
,
A.
, “
Planform geometry effects of piezoelectric wind energy harvesting composite inverted flags
,”
Smart Mater. Struct.
30
(
11
),
115014
(
2021b
).
50.
Yang
,
K.
,
Cioncolini
,
A.
, and
Revell
,
A.
, “
Wind energy harvesting with vertically aligned piezoelectric inverted flags
,”
Sensors
23
(
24
),
9673
(
2023
).
51.
Zhang
,
X.
and
Yu
,
S. D.
, “
Large eddy simulation of turbulent flow surrounding two simulated CANDU fuel bundles
,”
Nucl. Eng. Des.
241
(
9
),
3553
3572
(
2011
).
You do not currently have access to this content.