Deep learning has been extensively utilized for modeling and analysis of fluid turbulence. One such application is the use of super-resolution (SR) algorithms to reconstruct small-scale structures from their large-scale counterparts for turbulent flows. To date, all SR algorithms have been supervised or require unpaired reference data at a high resolution for training. This renders the model inapplicable to practical fluid flow scenarios, in which the generation of a high-resolution ground truth by resolving all scales down to the Kolmogorov scale becomes prohibitive. Hence, it is imperative to develop physics-guided models that exploit the multiscale nature of turbulence. Considering SR as a state-estimation problem, we present a self-supervised workflow based on deep neural networks to reconstruct small-scale structures that are relevant to homogeneous isotropic turbulence. In addition to visual similarity, we assessed the quality of the obtained reconstruction using spectra, structure functions, and probability density functions of the gradients of velocity and a passive scalar. From the analysis, we infer that the outputs of the workflow are in statistical agreement with the ground truth, for which the training pipeline is agnostic. Insights into learnability, interpretability, and generality of the trained networks have been provided as well. The results of this study can be leveraged to devise techniques for the reconstruction of small-scale structures using large-eddy simulation data.

1.
J.
Ling
,
A.
Kurzawski
, and
J.
Templeton
, “
Reynolds averaged turbulence modelling using deep neural networks with embedded invariance
,”
J. Fluid Mech.
807
,
155
166
(
2016
).
2.
S.
Bhatnagar
,
Y.
Afshar
,
S.
Pan
,
K.
Duraisamy
, and
S.
Kaushik
, “
Prediction of aerodynamic flow fields using convolutional neural networks
,”
Comput. Mech.
64
,
525
545
(
2019
).
3.
D.
Fan
,
L.
Yang
,
Z.
Wang
,
M. S.
Triantafyllou
, and
G. E.
Karniadakis
, “
Reinforcement learning for bluff body active flow control in experiments and simulations
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
26091
26098
(
2020
).
4.
G.
Novati
,
H. L.
de Laroussilhe
, and
P.
Koumoutsakos
, “
Automating turbulence modelling by multi-agent reinforcement learning
,”
Nat. Mach. Intell.
3
,
87
96
(
2021
).
5.
M. G.
Kapteyn
,
J. V. R.
Pretorius
, and
K. E.
Willcox
, “
A probabilistic graphical model foundation for enabling predictive digital twins at scale
,”
Nat. Comput. Sci.
1
,
337
347
(
2021
).
6.
A.
Racca
,
N. A. K.
Doan
, and
L.
Magri
, “
Predicting turbulent dynamics with the convolutional autoencoder echo state network
,”
J. Fluid Mech.
975
,
A2
(
2023
).
7.
C.
Vignon
,
J.
Rabault
,
J.
Vasanth
,
F.
Alcántara-Ávila
,
M.
Mortensen
, and
R.
Vinuesa
, “
Effective control of two-dimensional Rayleigh–Bénard convection: Invariant multi-agent reinforcement learning is all you need
,”
Phys. Fluids
35
,
065146
(
2023
).
8.
D.
Buaria
and
K. R.
Sreenivasan
, “
Forecasting small-scale dynamics of fluid turbulence using deep neural networks
,”
Proc. Natl. Acad. Sci. U. S. A.
120
,
e2305765120
(
2023
).
9.
S.
Barwey
,
M.
Hassanaly
,
V.
Raman
, and
A.
Steinberg
, “
Using machine learning to construct velocity fields from OH-PLIF images
,”
Combust. Sci. Technol.
194
,
93
116
(
2019
).
10.
P.
Clark Di Leoni
,
L.
Agasthya
,
M.
Buzzicotti
, and
L.
Biferale
, “
Reconstructing Rayleigh-Bénard flows out of temperature-only measurements using physics-informed neural networks
,”
Eur. Phys. J. E
46
,
16
(
2023
).
11.
C.
Ledig
,
L.
Theis
,
F.
Huszar
,
J.
Caballero
,
A.
Cunningham
,
A.
Acosta
,
A.
Aitken
,
A.
Tejani
,
J.
Totz
,
Z.
Wang
, and
W.
Shi
, “
Photo-realistic single image super-resolution using a generative adversarial network
,” arXiv:1609.04802 (
2016
).
12.
K.
Fukami
,
K.
Fukagata
, and
K.
Taira
, “
Super-resolution reconstruction of turbulent flows with machine learning
,”
J. Fluid Mech.
870
,
106
120
(
2019
).
13.
M.
Bode
,
M.
Gauding
,
Z.
Lian
,
D.
Denker
,
M.
Davidovic
,
K.
Kleinheinz
,
J.
Jitsev
, and
H.
Pitsch
, “
Using physics-informed enhanced super-resolution generative adversarial networks for subfilter modeling in turbulent reactive flows
,”
Proc. Combust. Inst.
38
,
2617
2625
(
2021
).
14.
A.
Subramaniam
,
M. L.
Wong
,
R. D.
Borker
,
S.
Nimmagadda
, and
S. K.
Lele
, “
Turbulence enrichment using physics-informed generative adversarial networks
,” arXiv:2003.01907 (
2020
).
15.
P.
Pant
and
A. B.
Farimani
, “
Deep learning for efficient reconstruction of high-resolution turbulent DNS data
,” arXiv:2010.11348 (
2020
).
16.
O.
Obiols-Sales
,
A.
Vishnu
,
N.
Malaya
, and
A.
Chandramowlishwaran
, “
SURFNet: Super-resolution of turbulent flows with transfer learning using small datasets
,” arXiv:2108.07667 (
2021
).
17.
H.
Kim
,
J.
Kim
,
S.
Won
, and
C.
Lee
, “
Unsupervised deep learning for super-resolution reconstruction of turbulence
,”
J. Fluid Mech.
910
,
A29
(
2021
).
18.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
2000
).
19.
M.
Germano
,
U.
Piomelli
,
P.
Moin
, and
W. H.
Cabot
, “
A dynamic subgrid-scale eddy viscosity model
,”
Phys. Fluids A: Fluid Dyn.
3
,
1760
1765
(
1991
).
20.
J.
Bardina
,
J.
Ferziger
, and
W.
Reynolds
, “
Improved subgrid-scale models for large-eddy simulation
,” in
13th Fluid and Plasma Dynamics Conference
(
American Institute of Aeronautics and Astronautics
,
1980
).
21.
S.
Liu
,
C.
Meneveau
, and
J.
Katz
, “
Experimental study of similarity subgrid-scale models of turbulence in the far-field of a jet
,”
Appl. Sci. Res.
54
,
177
190
(
1995
).
22.
V.
Borue
and
S.
Orszag
, “
Local energy flux and subgrid-scale statistics in three-dimensional turbulence
,”
J. Fluid Mech.
366
,
1
31
(
1998
).
23.
I. J.
Goodfellow
,
J.
Pouget-Abadie
,
M.
Mirza
,
B.
Xu
,
D.
Warde-Farley
,
S.
Ozair
,
A.
Courville
, and
Y.
Bengio
, “
Generative adversarial networks
,” arXiv:1406.2661 (
2014
).
24.
H.
Thanh-Tung
and
T.
Tran
, “
On catastrophic forgetting and mode collapse in generative adversarial networks
,” arXiv:1807.04015 (
2018
).
25.
X.
Wang
,
K.
Yu
,
S.
Wu
,
J.
Gu
,
Y.
Liu
,
C.
Dong
,
C. C.
Loy
,
Y.
Qiao
, and
X.
Tang
, “
ESRGAN: Enhanced super-resolution generative adversarial networks
,” arXiv:1809.00219 (
2018
).
26.
A.
Jolicoeur-Martineau
, “
The relativistic discriminator: A key element missing from standard GAN
,” arXiv:1807.00734 (
2018
).
27.
D. A.
Donzis
,
P. K.
Yeung
, and
K. R.
Sreenivasan
, “
Dissipation and enstrophy in isotropic turbulence: Resolution effects and scaling in direct numerical simulations
,”
Phys. Fluids
20
,
045108
(
2008
).
28.
W.
Shi
,
J.
Caballero
,
F.
Huszár
,
J.
Totz
,
A. P.
Aitken
,
R.
Bishop
,
D.
Rueckert
, and
Z.
Wang
, “
Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network
,” arXiv:1609.05158 (
2016
).
You do not currently have access to this content.