This study is concerned with accurately predicting the subgrid-scale (SGS) stress using an artificial neural network (ANN) with a linear eddy-viscosity term and a nonlinear term as the input variables. A priori and a posteriori tests are conducted to examine the prediction performance of the ANN-based SGS stress model in decaying homogeneous isotropic turbulence. In a priori test, the present ANN-based SGS model shows high correlation coefficients between the true and predicted SGS stresses, and excellent predictions of the SGS stress and dissipation. In a posteriori test, it is found that the ANN-based SGS model can predict the turbulence statistics more accurately than the traditional dynamic SGS models. The generalization capabilities of the model to untrained flow conditions and unstrained types of turbulent flow have been evaluated. It is found that the proposed ANN-based model can provide an accurate prediction of the SGS stress under different Reynolds numbers and flow types. A comparison among several existing ANN-based models with different input variables is presented, demonstrating a significant advantage of the present model.

1.
L.
Angelilli
,
P. P.
Ciottoli
,
F.
Picano
,
M.
Valorani
, and
H. G.
Im
, “
Assessment of subgrid dispersion models for large-eddy simulations of turbulent jet flows with dilute spray droplets
,”
Phys. Fluids
34
,
073305
(
2022
).
2.
S.
Katiyar
and
S.
Sarkar
, “
Flow transition on the suction surface of a controlled-diffusion compressor blade using a large-eddy simulation
,”
Phys. Fluids
34
,
094108
(
2022
).
3.
M.
David
,
A.
Toutant
, and
F.
Bataille
, “
Thermal large-eddy simulation methods to model highly anisothermal and turbulent flows
,”
Phys. Fluids
35
,
035106
(
2023
).
4.
J.
Smagorinsky
, “
General circulation experiments with the primitive equations: I. The basic experiment
,”
Mon. Weather Rev.
91
,
99
(
1963
).
5.
J.
Bardina
, “
Improved turbulence models based on large eddy simulation of homogeneous, incompressible, turbulent flows
,” Ph.D. thesis (
Stanford University
,
1983
).
6.
R. A.
Clark
,
J. H.
Ferziger
, and
W. C.
Reynolds
, “
Evaluation of subgrid-scale models using an accurately simulated turbulent flow
,”
J. Fluid Mech.
91
,
1
(
1979
).
7.
S.
Liu
,
C.
Meneveau
, and
J.
Katz
, “
On the properties of similarity subgrid-scale models as deduced from measurements in a turbulent jet
,”
J. Fluid Mech.
275
,
83
(
1994
).
8.
C.
Meneveau
and
J.
Katz
, “
Scale-invariance and turbulence models for large-eddy simulation
,”
Annu. Rev. Fluid Mech.
32
,
1
(
2000
).
9.
B.
Vreman
,
B.
Geurts
, and
H.
Kuerten
, “
Large-eddy simulation of the temporal mixing layer using the Clark model
,”
Theor. Comput. Fluid Dyn.
8
,
309
(
1996
).
10.
M.
Germano
, “
A proposal for a redefinition of the turbulent stresses in the filtered Navier–Stokes equations
,”
Phys. Fluids
29
,
2323
(
1986
).
11.
Y.
Zang
,
R. L.
Street
, and
J. R.
Koseff
, “
A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows
,”
Phys. Fluids
5
,
3186
(
1993
).
12.
B.
Vreman
,
B.
Geurts
, and
H.
Kuerten
, “
Large-eddy simulation of the turbulent mixing layer
,”
J. Fluid Mech.
339
,
357
(
1997
).
13.
R.
Anderson
and
C.
Meneveau
, “
Effects of the similarity model in finite-difference LES of isotropic turbulence using a Lagrangian dynamic mixed model
,”
Flow, Turbul. Combust.
62
,
201
(
1999
).
14.
M.
Germano
,
U.
Piomelli
,
P.
Moin
, and
W. H.
Cabot
, “
A dynamic subgrid-scale eddy viscosity model
,”
Phys. Fluids
3
,
1760
(
1991
).
15.
D. K.
Lilly
, “
A proposed modification of the Germano subgrid-scale closure method
,”
Phys. Fluids
4
,
633
(
1992
).
16.
M. V.
Salvetti
and
S.
Banerjee
, “
A priori tests of a new dynamic subgrid-scale model for finite-difference large-eddy simulations
,”
Phys. Fluids
7
,
2831
(
1995
).
17.
A. G.
Tabe Jamaat
and
B. Y.
Hattori
, “
Development of subgrid-scale model for LES of Burgers turbulence with large filter size
,”
Phys. Fluids
34
,
045120
(
2022
).
18.
Q.
Wu
,
Y.
Zhao
,
Y.
Shi
, and
S.
Chen
, “
Large-eddy simulation of particle-laden isotropic turbulence using machine-learned subgrid-scale model
,”
Phys. Fluids
34
,
065129
(
2022
).
19.
A.
Abekawa
,
Y.
Minamoto
,
K.
Osawa
,
H.
Shimamoto
, and
M.
Tanahashi
, “
Exploration of robust machine learning strategy for subgrid scale stress modeling
,”
Phys. Fluids
35
,
015162
(
2023
).
20.
A. S. P.
Ayapilla
and
Y.
Hattori
, “
A data-driven approach to model enstrophy transfers in large eddy simulation of forced two-dimensional turbulence
,”
Phys. Fluids
35
,
075116
(
2023
).
21.
Y.
Wang
,
Z.
Yuan
, and
J.
Wang
, “
Ensemble data assimilation-based mixed subgrid-scale model for large-eddy simulations
,”
Phys. Fluids
35
,
085107
(
2023
).
22.
M.
Reissmann
,
J.
Hasslberger
,
R. D.
Sandberg
, and
M.
Klein
, “
Application of gene expression programming to a-posteriori LES modeling of a Taylor Green vortex
,”
J. Comput. Phys.
424
,
109859
(
2021
).
23.
M.
Gamahara
and
Y.
Hattori
, “
Searching for turbulence models by artificial neural network
,”
Phys. Rev. Fluids
2
,
054604
(
2017
).
24.
Z.
Wang
,
K.
Luo
,
D.
Li
,
J.
Tan
, and
J.
Fan
, “
Investigations of data-driven closure for subgrid-scale stress in large-eddy simulation
,”
Phys. Fluids
30
,
125101
(
2018
).
25.
C.
Xie
,
Z.
Yuan
, and
J.
Wang
, “
Artificial neural network-based nonlinear algebraic models for large eddy simulation of turbulence
,”
Phys. Fluids
32
,
115101
(
2020
).
26.
J.
Park
and
H.
Choi
, “
Toward neural-network-based large eddy simulation: Application to turbulent channel flow
,”
J. Fluid Mech.
914
,
A16
(
2021
).
27.
Y.
Wang
,
Z.
Yuan
,
C.
Xie
, and
J.
Wang
, “
A dynamic spatial gradient model for the subgrid closure in large-eddy simulation of turbulence
,”
Phys. Fluids
33
,
075119
(
2021
).
28.
Y.
Wang
,
Z.
Yuan
,
C.
Xie
, and
J.
Wang
, “
Artificial neural network-based spatial gradient models for large-eddy simulation of turbulence
,”
AIP Adv.
11
,
055216
(
2021
).
29.
L.
Wu
and
Z.
Xiao
, “
Subgrid-scale stress modeling based on artificial neural network
,”
Chin. J. Theor. Appl. Mech.
53
,
2667
(
2021
).
30.
M.
Kang
,
Y.
Jeon
, and
D.
You
, “
Neural-network-based mixed subgrid-scale model for turbulent flow
,”
J. Fluid Mech.
962
,
A38
(
2023
).
31.
S.
Laizet
and
E.
Lamballais
, “
High-order compact schemes for incompressible flows: A simple and efficient method with quasi-spectral accuracy
,”
J. Comput. Phys.
228
,
5989
(
2009
).
32.
S.
Laizet
and
N.
Li
, “
Incompact3d: A powerful tool to tackle turbulence problems with up to O (105) computational cores
,”
Int. J. Numer. Methods Fluids
67
,
1735
(
2011
).
33.
D. P.
Kingma
and
J.
Ba
, “
Adam: A method for stochastic optimization
,” arXiv:1412.6980 (
2014
).
34.
M.
Abadi
,
P.
Barham
,
J.
Chen
,
Z.
Chen
,
A.
Davis
,
J.
Dean
,
M.
Devin
,
S.
Ghemawat
,
G.
Irving
, and
M.
Isard
, “
TensorFlow: A system for large-scale machine learning
,” in
12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16)
(
USENIX Association
,
Savannah
,
2016
), pp.
265
283
.
35.
I.
Goodfellow
,
Y.
Bengio
, and
A.
Courville
,
Deep Learning
(
MIT Press
,
2016
).
36.
T. S.
Lund
and
E.
Novikov
, “
Parameterization of subgrid-scale stress by the velocity gradient tensor
,” in
Annual Research Briefs
(
Center for Turbulence Research
,
Stanford
,
1993
), pp.
27
43
.
37.
S. B.
Pope
, “
A more general effective-viscosity hypothesis
,”
J. Fluid Mech.
72
,
331
(
1975
).
38.
J.
Ling
,
A.
Kurzawski
, and
J.
Templeton
, “
Reynolds averaged turbulence modelling using deep neural networks with embedded invariance
,”
J. Fluid Mech.
807
,
155
(
2016
).
39.
A. J. M.
Spencer
and
R. S.
Rivlin
, “
The theory of matrix polynomials and its application to the mechanics of isotropic continua
,”
Arch. Rational Mech. Anal.
2
,
309
(
1959
).
40.
M. H.
Silvis
,
H. J.
Bae
,
F. X.
Trias
,
M.
Abkar
, and
R.
Verstappen
, “
A nonlinear subgrid-scale model for large-eddy simulations of rotating turbulent flows
,” arXiv:1904.12748 (
2019
).
41.
L.
Marstorp
,
G.
Brethouwer
,
O.
Grundestam
, and
A. V.
Johansson
, “
Explicit algebraic subgrid stress models with application to rotating channel flow
,”
J. Fluid Mech.
639
,
403
(
2009
).
42.
M.
Montecchia
,
G.
Brethouwer
,
A. V.
Johansson
, and
S.
Wallin
, “
Taking large-eddy simulation of wall-bounded flows to higher Reynolds numbers by use of anisotropy-resolving subgrid models
,”
Phys. Rev. Fluids
2
,
034601
(
2017
).
43.
M.
Montecchia
,
G.
Brethouwer
,
S.
Wallin
,
A. V.
Johansson
, and
T.
Knacke
, “
Improving LES with OpenFOAM by minimising numerical dissipation and use of explicit algebraic SGS stress model
,”
J. Turbul.
20
,
697
(
2019
).
44.
S. G.
Chumakov
, “
A priori study of subgrid-scale flux of a passive scalar in isotropic homogeneous turbulence
,”
Phys. Rev. E
78
,
036313
(
2008
).
45.
G.
Patterson
, Jr.
and
S. A.
Orszag
, “
Spectral calculations of isotropic turbulence: Efficient removal of aliasing interactions
,”
Phys. Fluids
14
,
2538
(
1971
).
46.
C.
Canuto
,
M. Y.
Hussaini
,
A.
Quarteroni
, and
T. A.
Zang
,
Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics
(
Springer Science & Business Media
,
2007
).
47.
A.
Ferrante
and
S.
Elghobashi
, “
On the physical mechanisms of two-way coupling in particle-laden isotropic turbulence
,”
Phys. Fluids
15
,
315
(
2003
).
48.
P.-K.
Yeung
and
S. B.
Pope
, “
Lagrangian statistics from direct numerical simulations of isotropic turbulence
,”
J. Fluid Mech.
207
,
531
(
1989
).
49.
A. N.
Kolmogorov
, “
On the degeneration of isotropic turbulence in an incompressible viscous fluid
,”
Dokl. Akad. Nauk SSSR
31
,
319
(
1941
).
50.
J.
Jeong
and
F.
Hussain
, “
On the identification of a vortex
,”
J. Fluid Mech.
285
,
69
(
1995
).
51.
M. M.
Rogers
and
P.
Moin
, “
The structure of the vorticity field in homogeneous turbulent flows
,”
J. Fluid Mech.
176
,
33
(
1987
).
52.
J.
Jiménez
,
A. A.
Wray
,
P. G.
Saffman
, and
R. S.
Rogallo
, “
The structure of intense vorticity in isotropic turbulence
,”
J. Fluid Mech.
255
,
65
(
1993
).
53.
P. A.
Davidson
,
Turbulence: An Introduction for Scientists and Engineers
(
Oxford University Press
,
2015
).
54.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
2000
).
55.
P.
Sagaut
,
Large Eddy Simulation for Incompressible Flows: An Introduction
(
Springer Science & Business Media
,
2005
).
56.
N.
Park
,
J. Y.
Yoo
, and
H.
Choi
, “
Toward improved consistency of a priori tests with a posteriori tests in large eddy simulation
,”
Phys. Fluids
17
,
015103
(
2005
).
57.
K.
Inagaki
and
H.
Kobayashi
, “
Transport and modeling of subgrid-scale turbulent kinetic energy in channel flows
,”
AIP Adv.
12
,
045222
(
2022
).
58.
W.-W.
Kim
and
S.
Menon
, “
Application of the localized dynamic subgrid-scale model to turbulent wall-bounded flows
,” AIAA Paper No. 210-1997,
1997
.
59.
S.
Ghosal
,
T. S.
Lund
,
P.
Moin
, and
K.
Akselvoll
, “
A dynamic localization model for large-eddy simulation of turbulent flows
,”
J. Fluid Mech.
286
,
229
(
1995
).
60.
P.
Moin
,
K.
Squires
,
W.
Cabot
, and
S.
Lee
, “
A dynamic subgrid-scale model for compressible turbulence and scalar transport
,”
Phys. Fluids
3
,
2746
(
1991
).
61.
T. S.
Lundgren
, “
Linearly forced isotropic turbulence
,” in
Annual Research Briefs
(
Center for Turbulence Research
,
Stanford
,
2003
), pp.
461
473
.
62.
E. E.
Akylas
,
S. C.
Kassinos
,
D. W.
Rouson
, and
X.
Xu
, “
Accelerating stationarity in linearly forced isotropic turbulence
,” in
Sixth International Symposium on Turbulence and Shear Flow Phenomena
(
Begel House Inc.
,
Seoul
,
2009
), pp.
22
24
.
63.
S. B.
Pope
, “
Ten questions concerning the large-eddy simulation of turbulent flows
,”
New J. Phys.
6
,
35
(
2004
).
64.
S. G.
Chumakov
, “
Subgrid models for large eddy simulation: Scalar flux, scalar dissipation and energy dissipation
,” Ph.D. thesis (
University of Wisconsin–Madison
,
2005
).
You do not currently have access to this content.