Tetrahydrofuran (THF) and dimethylsulfoxide (DMSO) are miscible in water due to hydrogen (H) bonding. Amphiphilic glycerol and sucrose esters with a different number of tails and heads separate them, depending on the organic solvent concentration. Separation is worse in solutions where amphiphiles are most soluble. Separation occurs due to interactions between the amphiphiles and either organic solvents or water, as shown by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). Separation is best with glycerol esters with more heads and tails. Multiple tails hamper interactions between glycerol ester heads, thereby facilitating interactions with organic solvents or water to promote solvent–water separation. THF interacts with the glycerol ester tails, while water H bonds with the glycerol ester heads, as indicated by activity coefficients estimated with conductor-like screening model for real solvents. In THF, amphiphiles self-assemble into micelles, as shown by small angle x ray scattering (SAXS). Without water, THF is likely both inside and outside the micelles. SAXS shows that micelles shrink with 4% water in THF because water molecules partition inside them and are smaller than THF. With additional water, micelles swell into emulsions. Dissimilar to THF, DMSO preferentially interacts with the glycerol ester heads rather than their tails. ATR-FTIR shows that the proportion of free vs bonded S=O groups of DMSO decreases upon mixing with glycerol esters. DMSO and glycerol esters primarily accept H bonds, as indicated by their sigma profile. This leads to competition for interactions with water, displacing DMSO.

1.
L.
Earnden
,
A. G.
Marangoni
,
T.
Laredo
,
J.
Stobbs
,
T.
Marshall
, and
E.
Pensini
, “
Decontamination of water co-polluted by copper, toluene and tetrahydrofuran using lauric acid
,”
Sci. Rep.
12
,
1
20
(
2022
).
2.
L.
Earnden
,
A. G.
Marangoni
,
T.
Laredo
,
J.
Stobbs
, and
E.
Pensini
, “
Mechanisms of separation between tetrahydrofuran and water using hydroxystearic acid
,”
Phys. Fluids
34
,
097119
(
2022
).
3.
L.
Earnden
,
A. G.
Marangoni
,
T.
Laredo
,
J.
Stobbs
, and
E.
Pensini
, “
Self-assembled glycerol monooleate demixes miscible liquids through selective hydrogen bonding to water
,”
J. Mol. Liq.
367
,
120551
(
2022
).
4.
T.
Marshall
,
L.
Earnden
,
A. G.
Marangoni
,
T.
Laredo
, and
E.
Pensini
, “
Cubic mesophases of self-assembled amphiphiles separate miscible solvents
,”
Colloids Surf. A
650
,
129548
(
2022
).
5.
C. M.
Sales
,
A.
Grostern
,
J. V.
Parales
,
R. E.
Parales
, and
L.
Alvarez-Cohen
, “
Oxidation of the cyclic ethers 1, 4-dioxane and tetrahydrofuran by a monooxygenase in two Pseudonocardia species
,”
Appl. Environ. Microbiol.
79
,
7702
7708
(
2013
).
6.
Y.
Yin
,
Y.
Yang
,
M.
de Lourdes Mendoza
,
S.
Zhai
,
W.
Feng
,
Y.
Wang
,
M.
Gu
,
L.
Cai
, and
L.
Zhang
, “
Progressive freezing and suspension crystallization methods for tetrahydrofuran recovery from Grignard reagent wastewater
,”
J. Cleaner Prod.
144
,
180
186
(
2017
).
7.
B.
Bartokova
,
T.
Laredo
,
A. G.
Marangoni
, and
E.
Pensini
, “
Mechanism of tetrahydrofuran separation from water by stearic acid
,”
J. Mol. Liq.
391
,
123262
(
2023
).
8.
B.
Bartokova
,
A. G.
Marangoni
,
T.
Laredo
, and
E.
Pensini
, “
Phase behavior of sulfolane: Potential implications for transport in groundwater
,”
Colloids Surf. A
677
,
132451
(
2023
).
9.
B.
Bartokova
,
A. G.
Marangoni
,
T.
Laredo
, and
E.
Pensini
, “
Effect of sorbitan ester structure on the separation between tetrahydrofuran and water
,”
Front. Soft Matter
3
,
1329058
(
2023
).
10.
A. T.
Besha
,
D. N.
Bekele
,
R.
Naidu
, and
S.
Chadalavada
, “
Recent advances in surfactant-enhanced in-situ chemical oxidation for the remediation of non-aqueous phase liquid contaminated soils and aquifers
,”
Environ. Technol. Innovation
9
,
303
322
(
2018
).
11.
F. J.
Beltrán
,
G.
Ovejero
, and
J.
Rivas
, “Oxidation of polynuclear aromatic hydrocarbons in water. 3. UV radiation combined with hydrogen peroxide,”
Ind. Eng. Chem. Res.
35
(
3
),
883
890
(
1996
).
12.
W. H.
Wang
,
G. E.
Hoag
,
J. B.
Collins
, and
R.
Naidu
, “
Evaluation of surfactant-enhanced in situ chemical oxidation (S-ISCO) in contaminated soil
,”
Water Air Soil Pollut.
224
,
1713
(
2013
).
13.
S. R.
Barman
,
P.
Banerjee
,
A.
Mukhopadhayay
, and
P.
Das
, “
Biodegradation of acenapthene and naphthalene by Pseudomonas mendocina: Process optimization, and toxicity evaluation
,”
J. Environ. Chem. Eng.
5
,
4803
4812
(
2017
).
14.
A.
Belhaj
,
N.
Desnoues
, and
C.
Elmerich
, “
Alkane biodegradation in Pseudomonas aeruginosa strains isolated from a polluted zone: Identification of alkB and alkB-related genes
,”
Res. Microbiol.
153
,
339
344
(
2002
).
15.
S.
Boonchan
,
M. L.
Britz
, and
G. A.
Stanley
, “
Surfactant‐enhanced biodegradation of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia
,”
Biotechnol. Bioeng.
59
,
482
494
(
1998
).
16.
J.
Hall
,
K.
Soole
, and
R.
Bentham
, “
Hydrocarbon phytoremediation in the family Fabacea—A review
,”
Int. J. Phytorem.
13
,
317
332
(
2011
).
17.
Y.
Sun
,
Q.
Zhou
,
Y.
Xu
,
L.
Wang
, and
X.
Liang
, “
Phytoremediation for co-contaminated soils of benzo [a] pyrene (B [a] P) and heavy metals using ornamental plant Tagetes patula
,”
J. Hazard. Mater.
186
,
2075
2082
(
2011
).
[PubMed]
18.
S.
Sophia
and
V.
Shetty Kodialbail
, “
Phytoremediation of soil for metal and organic pollutant removal
,” in
Bioprocess Engineering for Bioremediation
, The Handbook of Environmental Chemistry Vol.
104
, edited by
M.
Jerold
,
S.
Arockiasamy
, and
V.
Sivasubramanian
(
Springer
,
Cham
,
2020
).
19.
E.
Kolehmainen
and
I.
Turunen
, “
Micro-scale liquid–liquid separation in a plate-type coalescer
,”
Chem. Eng. Process.
46
,
834
839
(
2007
).
20.
M.
Yoshikawa
,
K.
Masaki
, and
M.
Ishikawa
, “
Pervaporation separation of aqueous organic mixtures through agarose membranes
,”
J. Membr. Sci.
205
,
293
300
(
2002
).
21.
P.
Jessop
and
M.
Cunningham
,
CO2-Switchable Materials: Solvents, Surfactants, Solutes and Solids
(
Royal Society of Chemistry
,
2020
).
22.
B.
Wang
,
T.
Ezejias
,
H.
Feng
, and
H.
Blaschek
, “
Sugaring-out: A novel phase separation and extraction system
,”
Chem. Eng. Sci.
63
,
2595
2600
(
2008
).
23.
P. B.
Dhamole
,
P.
Mahajan
, and
H.
Feng
, “
Phase separation conditions for sugaring-out in acetonitrile−water systems
,”
J. Chem. Eng. Data
55
(
9
),
3803
3806
(
2010
).
24.
G.
de Brito Cardoso
,
I. N.
Souza
,
T.
Mourão
,
M. G.
Freire
,
C. M. F.
Soares
, and
Á. S.
Lima
, “
Novel aqueous two-phase systems composed of acetonitrile and polyols: Phase diagrams and extractive performance
,”
Sep. Purif. Technol.
124
,
54
60
(
2014
).
25.
M.
Tabata
,
M.
Kumamoto
, and
J.
Nishimoto
, “
Chemical properties of water-miscible solvents separated by salting-out and their application to solvent extraction
,”
Anal. Sci.
10
,
383
388
(
1994
).
26.
R. L.
Souza
,
R. A.
Lima
,
J. A.
Coutinho
,
C. M.
Soares
, and
Á. S.
Lima
, “
Aqueous two-phase systems based on cholinium salts and tetrahydrofuran and their use for lipase purification
,”
Sep. Purif. Technol.
155
,
118
126
(
2015
).
27.
E.
Pensini
,
A. G.
Marangoni
,
B.
Bartokova
,
A. L.
Fameau
,
M. G.
Corradini
,
J. A.
Stobbs
,
Z.
Arthur
, and
S.
Prévost
, “
Sulfolane clustering in aqueous saline solutions
,”
Phys. Fluids
36
,
037117
(
2024
).
28.
M.
Mitsuno
and
K.
Hasegawa
, “
Airborne Ouzo: Evaporation-induced emulsification and phase separation dynamics of ternary droplets in acoustic levitation
,”
Phys. Fluids
36
,
033328
(
2024
).
29.
H.
Xu
,
Y.
Li
,
H.
Wu
,
Z.
Ding
,
S.
Yuan
,
H.
Bai
,
E.
Yao
, and
F.
Zhou
, “
Development and performance evaluation of nonionic surfactant-stabilized nanoemulsion for enhanced oil recovery applications in tight reservoir
,”
Phys. Fluids
36
,
032015
(
2024
).
30.
B.
Bartokova
,
A. G.
Marangoni
,
T.
Laredo
, and
E.
Pensini
, “
Role of hydrogen bonding on solvent separation using amphiphilic sorbitan ester
,”
Colloids Surf. C
1
,
100004
(
2023
).
31.
D. W.
Marquardt
, “
An algorithm for least-squares estimation of nonlinear parameters
,”
J. Soc. Ind. Appl. Math.
11
,
431
441
(
1963
).
32.
A. F.
Leontowich
,
A.
Gomez
,
B.
Diaz Moreno
,
D.
Muir
,
D.
Spasyuk
,
G.
King
,
J. W.
Reid
,
C. Y.
Kim
, and
S.
Kycia
, “
The lower energy diffraction and scattering side-bounce beamline for materials science at the Canadian Light Source
,”
J. Synchrotron Rad.
28
,
961
(
2021
).
33.
R. B.
Von Dreele
, “
Small-angle scattering data analysis in GSAS-II
,”
J. Appl. Crystallogr.
47
,
1784
1789
(
2014
).
34.
B. H.
Toby
and
R. B.
Von Dreele
, “
GSAS-II: The genesis of a modern open-source all purpose crystallography software package
,”
J. Appl. Crystallogr.
46
,
544
549
(
2013
).
35.
T.
Li
,
A. J.
Senesi
, and
B.
Lee
, “
Small angle x-ray scattering for nanoparticle research
,”
Chem. Rev.
116
,
11128
11180
(
2016
).
36.
K.
Levenberg
, “
A method for the solution of certain non-linear problems in least squares
,”
Q. Appl. Math.
2
,
164
168
(
1944
).
37.
C. C.
Pye
,
T.
Ziegler
,
E.
van Lenthe
, and
J. N.
Louwen
, “
An implementation of the conductor-like screening model of solvation within the Amsterdam density functional package—Part II. COSMO for real solvents
,”
Can. J. Chem.
87
,
790
797
(
2009
).
38.
V.
Patel
,
A. G.
Marangoni
,
S. M.
Ghazani
,
T.
Laredo
,
J.
Stobbs
, and
P.
Pensini
, “
Effect of bacterial surfactants on the phase behavior of miscible pollutants in water
,”
Colloids Surf. C
1
,
100013
(
2023
).
39.
E.
Mullins
,
Y. A.
Liu
,
A.
Ghaderi
, and
S. D.
Fast
, “
Sigma profile database for predicting solid solubility in pure and mixed solvent mixtures for organic pharmacological compounds with COSMO-based thermodynamic methods
,”
Ind. Eng. Chem. Res.
47
,
1707
1725
(
2008
).
40.
L. B.
Dreier
,
M.
Bonn
, and
E. H.
Backus
, “
Hydration and orientation of carbonyl groups in oppositely charged lipid monolayers on water
,”
J. Phys. Chem. B
123
,
1085
1089
(
2019
).
41.
A.
Talik
,
M.
Tarnacka
,
M.
Geppert-Rybczyńska
,
B.
Hachuła
,
R.
Bernat
,
A.
Chrzanowska
,
K.
Kaminski
, and
M.
Paluch
, “
Are hydrogen supramolecular structures being suppressed upon nanoscale confinement? The case of monohydroxy alcohols
,”
J. Colloid Interface Sci.
576
,
217
229
(
2020
).
42.
A.
Patra
,
S.
Roy
,
S.
Saha
,
D. K.
Palit
, and
J. A.
Mondal
, “
Observation of extremely weakly interacting OH (∼ 3600 cm−1) in the vicinity of high charge density metal ions (Mz+; z = 1, 2, 3): A structural heterogeneity in the extended hydration shell
,”
J. Phys. Chem. C
124
,
3028
3036
(
2020
).
43.
E.
Pensini
,
D.
Harbottle
,
F.
Yang
,
P.
Tchoukov
,
Z.
Li
,
I.
Kailey
,
J.
Behles
,
J.
Masliyah
, and
Z.
Xu
, “
Demulsification mechanism of asphaltene-stabilized water-in-oil emulsions by a polymeric ethylene oxide−propylene oxide demulsifier
,”
Energy Fuels
28
,
6760
6771
(
2014
).
44.
A.
Luzar
and
D.
Chandler
, “Structure and hydrogen bond dynamics of water–dimethyl sulfoxide mixtures by computer simulations,”
J. Chem. Phys.
98
(
10
),
8160
8173
(
1993
).
45.
S. A.
Markarian
,
A. L.
Zatikyan
,
S.
Bonora
, and
C.
Fagnano
, “
Raman and FT IR ATR study of diethylsulfoxide/water mixtures
,”
J. Mol. Struct.
655
,
285
292
(
2003
).
46.
B.
Bartokova
,
A. G.
Marangoni
,
T.
Laredo
,
J.
Stobbs
,
P.
Meszaros
, and
E.
Pensini
, “
Effect of hydrogen bonding on the mixing behaviour of ternary aqueous mixtures
,”
J. Mol. Liq.
383
,
122124
(
2023
).
47.
M.
Talaikis
,
M.
Valldeperas
,
I.
Matulaitienė
,
J. L.
Borzova
,
J.
Barauskas
,
G.
Niaura
, and
T.
Nylander
, “
On the molecular interactions in lipid bilayer–water assemblies of different curvatures
,”
J. Phys. Chem. B
123
,
2662
2672
(
2019
).
48.
C. J.
Orendorff
,
M. W.
Ducey
, Jr.
, and
J. E.
Pemberton
, “
Quantitative correlation of Raman spectral indicators in determining conformational order in alkyl chains
,”
J. Phys. Chem. A
106
,
6991
6998
(
2002
).
You do not currently have access to this content.