For a finite-length cylinder rotor, rotation induces unique pattern tip vortices at the free end, significantly altering the aerodynamic characteristics of the rotor. Endplates are often applied to finite-length cylinders as a means of restraining end effects. The endplates change the aerodynamic characteristics of the rotor by affecting the end axial flow. In the present study, cylinder rotors with static and rotating endplates of various diameters are investigated by means of large eddy simulation. By analyzing the aerodynamic force, wind pressure, and flow field characteristics of the rotors, the varying patterns and reasons for the aerodynamic characteristics of rotors with static and rotating endplates are clarified. The results show that the endplate induces disk vortices and changes the vortex patterns at the free end of the rotor, and the static endplates show little effect on the development of tip vortices, so the wake vortices show the triple vortex pattern, whereas the rotating endplates enhance the intensity of the plate vortices and inhibit the tip vortices development, leading to the double vortex pattern, which in turn produces a different pattern of aerodynamic characteristics compared to the rotor with the static endplates. The mechanism of the variation in the aerodynamic characteristics and vortex patterns is partially explained by analyzing and discussing the flow field results.

1.
Ahlborn
,
F.
, “
The Magnus effect in theory and in reality
,”
Report No. NACA-TM-567
,
1929
.
2.
Badalamenti
,
C.
and
Prince
,
S. A.
, “
The effects of endplates on a rotating cylinder in crossflow
,” AIAA Paper No. 2008–7063,
2008
.
3.
Betz
,
A.
, “
The ‘Magnus effect’—The principle of the Flettner rotor
,”
Report No. NACA-TM-310
,
1925
.
4.
Bordogna
,
G.
,
Muggiasca
,
S.
,
Giappino
,
S.
,
Belloli
,
M.
,
Keuning
,
J. A.
,
Huijsmans
,
R. H. M.
, and
van ‘t Veer
,
A. P.
, “
Experiments on a Flettner rotor at critical and supercritical Reynolds numbers
,”
J. Wind Eng. Ind. Aerodyn.
188
,
19
29
(
2019
).
5.
Chen
,
W.
,
Wang
,
H.
, and
Liu
,
X.
, “
Experimental investigation of the aerodynamic performance of Flettner rotors for marine applications
,”
Ocean Eng.
281
,
115006
(
2023
).
6.
Chopra
,
G.
and
Mittal
,
S.
, “
Laminar separation bubble on a rotating cylinder in uniform flow
,”
Phys. Fluids.
35
,
044105
(
2023
).
7.
De Marco
,
A.
,
Mancini
,
S.
, and
Pensa
,
C.
, “
Preliminary analysis for marine application of Flettner rotors
,”
Report No. INT-NAM-14
,
2014
.
8.
De Marco
,
A.
,
Mancini
,
S.
,
Pensa
,
C.
,
Calise
,
G.
, and
De Luca
,
F.
, “
Flettner rotor concept for marine applications: A systematic study
,”
Int. J. Rotating Mach.
2016
,
3458750
.
9.
Hemsuwan
,
W.
,
Sakamoto
,
K.
, and
Takahashi
,
T.
, “
Lift force generation of a moving circular cylinder with a strip-plate set downstream in cruciform arrangement: Flow field improving using tip ends
,”
Int. J. Aeronaut. Space Sci.
19
,
606
617
(
2018
).
10.
Karabelas
,
S. J.
, “
Large-eddy simulation of high-Reynolds number flow past a rotating cylinder
,”
Int. J. Heat Fluid Flow
31
(
3
),
518
527
(
2010
).
11.
Kown
,
C.
,
Yeon
,
S.
,
Kim
,
Y.
,
Kim
,
Y.
,
Kim
,
Y.
, and
Kang
,
H.
, “
A parametric study for a Flettner rotor in standalone condition using CFD
,”
Int. J. Nav. Arch. Ocean.
14
,
100493
(
2022
).
12.
Lilly
,
D. K.
, “
A proposed modification of the Germano sub-grid scale closure method
,”
Phys. Fluids.
4
,
633
635
(
1992
).
13.
Liu
,
J.
,
Ma
,
W.
,
Jin
,
L.
, and
Liu
,
Q.
, “
Large eddy simulation of end effects on a cylinder rotor
,”
Phys. Fluids.
36
,
024120
(
2024
).
14.
Liu
,
J.
,
Ma
,
W.
,
Jin
,
L.
,
Liu
,
X.
, and
Li
,
T.
, “
Experimental and numerical investigation on the wake flow and vortex shedding of a rotating circular cylinder
,”
Phys. Fluids.
35
,
074114
(
2023
).
15.
Magnus
,
G.
, “
On the deflection of a projectile
,”
Poggendorff's Ann. Phys. Chem.
88
,
804
810
(
1853
).
16.
Matsui
,
T.
, “
The flow near the surface of a cylinder rotating in a uniform flow
,” in
Proceedings of Euromech 90 Colloquium
, Nancy, France,
1977
.
17.
Morse
,
T. L.
,
Govardhan
,
R. N.
, and
Williamson
,
C. H. K.
, “
The effect of end conditions on the vortex-induced vibration of cylinders
,”
J. Fluids Struct.
24
,
1227
1239
(
2008
).
18.
Prandtl
,
L.
and
Tietjens
,
O. G.
,
Applied Hydro-and Aero-Mechanics
(
Dover Press
,
New York
,
1957
).
19.
Prandtl
,
L.
, “
The Magnus effect and wind-powered ships
,”
Naturwissenschaften
13
,
1787
1806
(
1925
).
20.
Reid
,
E. G.
, “
Tests of rotating cylinders
,”
Report No. NACA-TN-209
,
1924
.
21.
Stephen
,
B. P.
,
Turbulent Flows
(
Cambridge University Press
,
England
2010
).
22.
Swanson
,
W. M.
, “
The magnus effect: A summary of investigations to date
,”
J. Basic Eng.
83
,
461
470
(
1961
).
23.
Taneda
,
S.
, “
Definition of separation
,”
Rep. Res. Inst. Appl. Mech.
28
,
73
81
(
1980
).
24.
Thom
,
A.
, “
Effects of discs on the air forces on a rotating cylinder
,”
Report No. 1623
,
Aeronautical Research Committee
,
1934
.
25.
Thouault
,
N.
,
Breitsamter
,
C.
,
Adams
,
N. A.
,
Seifert
,
J.
,
Badalamenti
,
C.
, and
Prince
,
S. A.
, “
Numerical analysis of a rotating cylinder with spanwise disks
,”
AIAA J.
50
(
2
),
271
283
(
2012
).
26.
Tokumaru
,
P.
and
Dimotakis
,
P. E.
, “
The lift of a cylinder executing rotary motions in a uniform flow
,”
J. Fluid Mech.
255
,
1
(
1993
).
27.
Yazdi
,
M. J. E.
,
Rad
,
A. S.
, and
Khoshnevis
,
A. B.
, “
Features of the flow over a rotating circular cylinder at different spin ratios and Reynolds numbers: Experimental and numerical study
,”
Eur. Phys. J. Plus
134
,
189
(
2019
).
28.
Zdravkovich
,
M. M.
,
Flow Around Circular Cylinders—Vol 2: Applications
(
Oxford University Press
,
New York
,
2003
).
You do not currently have access to this content.